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ABSTRACT

The symmetrized density matrix renormalization group approach is applied within the extended Hubbard-Peierls
model (with parameters U/t, V/t, and bond alternation 8) to study the ordering of the lowest one-photon (1'B,’) and two-
photon (2'A,") states as well as the lowest-lying triplet states in one-dimensional conjugated systems with chain lengths, N,
up to N=80 sites. Three different types of crossovers are studied, as a function of U/t, §, and N. The “U - crossover” and “5 -
crossover” are examined for long chains, which provide a sharp contrast to the situation found previously for short chains.
The “N-crossover”, which only occurs for realistic intermediate correlation strength, illustrates the more localized nature of
the 2A, excitation relative to the 1B, excitation. We also apply the quantum-chemical Pariser-Parr-Pople (PPP) model with
long-range Ohno potential to the polyene molecules. We find that the 2A, state is always below the 1B, state for chain
lengths N=4 to 40. Most interestingly, the gap between 2A, and 1B, first increases for N up to 16, then levels off, and finally
starts to decrease. Thus, extrapolations to long chain based on short polyene data are hazardous.

keywords: quantum confinement, excited states, conjugated polymers, electron correlation, density matrix renormalizatioin _
group, polyene, photoluminescence.

1. INTRODUCTION

Recently, much attention has focused on the luminescence properties of conjugated organic materials because of
their potential for application in display devices [1]. These studies have underscored the importance of the structure of low-
lying electronic excited states. Specifically, a major parameter is the relative ordering of the lowest dipole allowed singlet

(1'B,) state and the lowest dipole forbidden singlet (2'A;") state, in the light of Kasha’s rule which relates molecular
fluorescence to the lowest excited singlet state.

It is well established that correlated electron systems behave differently from independent electron systems,
especially in the case of electronic excitations. Earlier work has shown that the lowest optically forbidden excited state 2A;
lies below the optically allowed excited state 1B, in polyene molecules [2] (thus preventing any significant luminescence in
such compounds), while an independent electron model gives the opposite picture; similar results have been found by
Periasamy et al. in the case of polycrystalline sexithienyl [3] or Lawrence et al. in single crystal polydiacetylene [4]. These
examples serve as evident manifestation of electron correlation in conjugated molecules. The influence of electron
correlation has also been considered as the main origin of latt'ce dimerization leading to the view that conjugated polymers
are Mott insulators rather than Peierls insulators [5]. In the context of third-order nonlinear optical response (third-harmonic
generation and electroabsorption) and photo-induced absorption, the role of higher-lying excited states derived from
correlated electron models has also been emphasized [6]. When going from oligomer to polymer chains, continuum band

states are formed, derived from the higher lying excited states of oligomers, while the 1B, and 2Ag‘statcs keep an excitonic
character.
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It is also important to stress that the electronic and optical properties of conjugated oligomers and polymers differ,
depending on whether the compounds are in the gas phase, solution, or the solid state (7). The chemical environment affects

quantum size effects [9].

In view of these features, we believe that these three factors: (i) geometric structure, (ii) strength of electron

correlation, and (iii) quantum confinement, are most relevant for the study of the photo- and electro-luminescence response
in organic conjugated chains.

Previous studies of the 1B/2A crossover behavior have been carried out for short chain systems. In the independent
electron limit, the 2A energy is significantly higher than that of 1B due to the discreteness of the molecular orbital

while 1B is a HOMO to LUMO excitation. According to previous results [10), as electron correlation U is tumed on
between the ground state and the 2A state narrows while the gap to the 1B state increases; the states thus cross at a given
Hubbard correlation strength U_. This, we refer to as the “U-crossover”. However, for an infinite chain, the 2A and 1B states
both occur at the same energy in the Hiickel limit (U=0). If the 2A and 1B states were evolving in a manner identical to that
in the short chains, these states would never cross with increasing U. Thus, for a given U, there must occur a crossover from
the short chain behavior to the long chain behavior; this, we refer to as the “N-crossover”.

, the gap

It was noted by Soos, Ramasesha and Galvio [11] from exact diagonalization studies of short chains that a similar
crossover occurred with variation of the bond-alternation parameter §, which we refer to as the “§ crossover”, The §-
crossover was studied by monitoring the optical gap and the lowest singlet-triplet (spin) gap; the critical 8. for a given
correlation strength was determined by the value of & at which the optical gap equals twice the spin gap. These authors
further described the system as behaving band-like for § values above 5 and correlated-like for 5 values below .. However,
as was pointed out in Ref. [12], increasing bond alternation does not lead to the band picture, because the binding energy of
the 1B exciton increases with increasing 8, an obvious indication that electron correlation increases at the same time.

In this work, we present a thorough study that encompasses the three kinds of crossovers, namely the U, N, and §
crossovers in conjugated chains, by employing the symmetrized density matrix renormalization group (SDMRG) theory. The
SDMRG approach [13] is currently the most reliable many-body method for calculating the low-lying excited states with
high accuracy for relatively large systems and for a wide range of model parameters. We first present an extended Hubbard-
Peierls model, a physicist’s general model, to study the three kinds of crossover behaviors.

We also investigate a specific case, the polyene molecules. These have been extensively studied both experimentally
and quantum chemically (ab initio and semiempirical) [14]. Controversial results have been found in the literature
concerning the ordering of 2A,; and 1B, [15] states. Due to difficulties in treating electron correlation effects in traditional
approaches, no definite results exist for polyenes with moderate sizes, e.g. N~20. The limited experimental data indicate that
the 2A, state is below 1B, from N=6 to N=16. Most interestingly, these results indicate that the gap between 1B, and 2A,
increases as chain length increases [14,16]. A rough extrapolation by Kohler placed the 2A, state energy at half that of IB, in

long chain limit [17]. Experimental efforts such as two-photon absorption have been performed on trans-polyacetylene to
verify this suggestion [18].

Here, we adopt the quantum-chemical model Pariser-Parr-Pople (PPP) with the long-range electron repulsion Ohno
potential to calculate the low-lying excited states. Due to the almost exact nature of our approach, our results provide
unambiguous theoretical evidence in terms of the evolution with chain length. In fact, we find that the 1B, - 2A, gap does
increase with chain length, only for chains shorter than N=16. The gap then tends to stabilize, eventually decreases for
longer chains. We will give an explanation based on the studies on the general crossover behaviors.

2. EXTENDED HUBBARD-PEIERLS MODEL AND SDMRG

The extended Hubbard-Peierls Hamiltonian reads:



o

H= -lz T+ (=1)'8)€ 0y, +hoc)+UD nn -1)/2+ VZ (n, = 1)(n,, -1 1

where & is the dimensionless dimerization parameter, U is the on-site Hubbard repulsion, t is the nearest-neighbor hopping
integral and V is the nearest-neighbor charge density-charge density interaction; », is the number of particle operator on site i.
The & term serves as a structural parameter in the simplest way, if we assume linear electron-lattice coupling in the static
limit; as has been pointed out before, the V-term is crucial to the understanding of the optical excitation spectrum, namely the
excitonic effect [19]. The present model can be regarded as the minimal correlated model for conjugated systems. Note that

the meaningful phase corresponds to the BOW (bond-order wave) regime, namely, V<U/2 [20]. We set V=0.4U without
loosing generality.

The density matrix renormalization group method is the most accurate numerical method for determining the ground
and low-lying excited states of quasi-one-dimensional correlated electron systems with short-range interactions [20]. In the
usual DMRG procedure, the good quantum numbers are the total number of particles and the total S, component; it is thus
difficult to target the singlet 1B, state as there are many states that appear between it and the ground state which have

different symmetry and spin. The number of these states increases with U and chain length N. As is known, DMRG works
well only for low-lying states.

We have developed a symmetrized DMRG technique that exploits spin parity P, C, symmetry, and electron-hole
symmetry J. The J and P operations hold only at half-filling. We start from a two-site system, for which exact solutions for
all the states are easily obtained, along with all the fermion operator matrix representations and density matrix for a single
site (half block). In Fock space, the symmetry operation is: JJ0>=x>, Jid>= (-1)|{>, JIT>=(-1)T>, Jjx>=-10>; Pj0>=(0>,
PN>=[T>, P|t>=|{>, P|x>=-|x>; where [0> and |x> represent an empty and a doubly occupied site, respectively, and site
index I is relevant to the phase of e-h symmetry. Then, for the entire 4-block system, four sites right after two sites for
instance, the projection operator matrix for a given irreducible representation is formed by a direct product of the four blocks:

J=T1 v, p=T] p> by vime of C, symmety: Gluo,o',u)=(-1y|it.c',o,0), with phase
i i

factor Y = (n u +no-)(np' +na-'), where n is the number of particles in the block. The three symmetry operators
commute with each other; the generated group is an Abelian group with eight irreducible representations labeled as °A* , ‘A,

OA+ OA- + en- + on- . . . . . . ., l
A", °A’, ‘B, °B’, °B’, and °B". The projection operator for a given irreducible representation I is: Pr = .8_.2 2r (R)R
R

where the R's are the symmetry operations and y, is the character. The construction of the symmertry adapted direct product
states consists in sequentially operating on each of the direct product states by the projection operator. The linear
dependencies of the symmetry adapted combinations are eliminated by carrying out a Gram-Schmidt orthonormalization. In
general, the operator R for a 2N+2 system is constructed as :

(ﬂ,g,g‘,y'|R2N+2|V, 7,7',V) = (#|RN|V)(0-[R1| f)(o"IRIIZ"><#'IRNI\/'> ; in the next iteration, Ry, is formed as:

(y,a|RN+l|v,r)=(leva)(a|R| 7), which is renormalized by the transformation §N+l =0"Ry,,0, where O is the
truncated N+1-block density matrix eigenvectors.

The coefficients of the direct product functions in the symmetrized basis form a matrix S, The Hamiltonian matrix in
the direct product basis can be transformed to the Hamiltonian in the symmetrized basis by f{z N+2 =STHyp,5S. The low-
lying eigenstates of this matrix can be obtained by Davidson's diagonalization algorithm.

The 1B, state is the lowest state in the subspace B, In fact, it is the lowest ionic state only if one employs the

electron-hole symmetry. This indicates the importance of this symmetry operation. In fact, in the Hubbard model, there is a
remarkable gap between the ionic space and the covalent space for all chain lengths.

Incorporating these three symmetries thus allows us to determine the 1B, and the 2A" state energies with
unprecedented accuracy for chains of ap to 80 sites [12, 13]. We choose to truncate the space of density matrix eigenstates to
100 (m=100) in most cases. For smaller U and 8, however, we choose a larger value of m (=150) in order to achieve
consistent accuracy. In fact, for the ground state and the lowest triplet state, we can also apply the unsymmetrized DMRG
technique because these two states are simply the lowest one in S;=0 and S,=1 spaces, respectively; this provides an
independent check for the symmetrization scheme.
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3. CROSSOVER BEHAVIORS

We contrast the “U-crossover” for short (N=8) and long (N=80) chains for fixed alternation §=0.07 in Fig. 1. It is
well known that in the strong correlation limit, the 2A state becomes a spin excitation which is gapless in the limit (V,5)=0
and this state can be described as composed of two triplets, as early suggested by Tavan and Schulten [22]. Thus, increase in
correlation strength should lead to a decrease in the 2A energy (22]. However, we note that in the N=8 chain, the two-photon
state energy remains nearly constant before decreasing for values of U/t larger than 2.0. In longer chains, the 2A, energy
increases even more rapidly than the 1B, energy with increasing correlation strength. This implies a substantial ionic
contribution to the 2A, state in long chains besides the covalent triplet-triplet contribution. This result constitutes the first

clear illustration of the importance of quantum-size effects. We find, however, that the critical correlation strength, U,, at
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Figure 1. Crossover on U for N=8 and N=80.

which the crossover occurs is nearly independent of the chain length N; in both N=8 and N=80 cases, U, is around 2.5t.

For fixed correlation strength (U/t = 3 and 4), we present the “5 crossover” results for N=8 and 80 in Fig. 2. We find

that the critical 3 value, &, strongly depends on chain length. For U/t=3, the 3. values are found to be 0.15 and 0.09 for N=8

and 80, respectively; for U/t=4, they are 0.32 and 0.22. Thus, 8. has both strong N and U dependences. We also show in Fig.
2 the crossover behavior between the 1B, energy and twice the lowest

triplet energy, E;. This crossover occurs at
systematically smaller & values, again emphasizing the larger ionic character present in the 2A, state compared to the lowest
triplet state.
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Figure 2a. §-crossover for U/t=3. Figure 2b. é-crossover for U/t=4,

Most interestingly, we find one more crossover behavior, which is the “N-crossover”, in the case of intermediate U/t
and medium to large § values. We observe that the 1B, and 2A, states cross over for fixed U/t and § as a function of N, the
chain length. The critical lengths are actually fairly insensitive to U and 6. In Figs. 3a (U/t=3, 6=0.12) and 3b (U/t=4.0,
8=0.27), we find this crossover for N=14 and N=12, respectively. This is a direct theoretical observation of quantum
confinement induced crossover. It is related to the fact that the 2A, excitation is more local in character with a shorter
characteristic length than the 1B, state. Thus, the 1B, excitation is stabilized over longer length scales than the 2A, excitation.
This is seen as a more rapid saturation in the 2A, energy compared to the 1B, energy, as a function of chain length. We note
that this crossover can also be seen from Fig. 2 where the §, values show a decrease in going from N=8 to N=80. This
behavior can only exist for intermediate correlation strength: for weak correlation, there does not exist any crossover and 2A,
lies above the 1B, state for all chain lengths as seen from Fig.1; at large values of U/t, we are in the atomic limit, a crossover

is not expected and the quantum size effects are largely suppressed. It has been widely accepted that the conjugated
molecules fall in the intermediate correlation regime; thus, the confinement-induced crossover is realistic.
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Note that we have not included the data for N=2. We stress that the dimer limit (N=2) constitutes a special case,
which cannot be extrapolated to longer chains, as far as the 2A, state is concerned. In the dimer limit, the exact solution for
the energies of all the four states for 2 electrons (half-filling) 1s given below:

E(1A,)=-¢,(, - ;_(\ﬁu V) 41612 (1+0) (U -V ) ; E(triplet)=0; E(1B,)=U-V; E(2A,)= e+U-V.

In fact, 2A, in the dimer is always higher than 1B, regardless of the choice of parameters. In the strong correlation
limit (4¢/(U-V)—0, e-0°), we note that E(1B,) becomes degenerate with E(2A;) from below. From Figure 1, the “covalent”
E(2A,) should come down well below E(1B,). The calculated 2A, state in the dimer limit has a totally different character
from that in cases N>2. In fact, in a two-site system, there is no space to construct two coupled triplet states; as a result, the

2A, state actually corresponds to an higher-lying ionic excitonic mA, state of the long chains, as discussed in Ref. [19]; this
feature deserves further study.

3. THE PPP MODEL APPLIED TO POLYENES

In order to provide the best comparison with previous semiempirical quantum-chemical calculations on polyenes,
we adopt here the Pariser-Parr-Pople Hamiltonian, with the long-range Ohno potential:

U

J1+(Ur 114397)?

U=11.26 eV for carbon, r is the inter-site distance in Angstrom in all-trans polyene chains with alternating bond length of
1.36/1.45 Angstrom and 120° bond angles. This long-range term replace the nearest-neighbor V term in Hamiltonian (1) as
Z V (n, -)n -1)- The hopping t is chosen as 2.4 eV, (with §=0.07).

i i 7

i<j

Vir)=

Even for the long range Ohno potential, the DMRG results can be also regarded as nearly exact for the ground state
and a few excited states. The accuracy of the calculations is manifested in the following ways: (i) the energy of the targeted
state converges with respect to increasing the dimension (the cut-off) of the truncated density matrix eigenstates, for instance,
the ground state energy changes only 0.001 eV when the cut-off goes from 100 to 120 eigenstates; and (ii) the difference
tends to vanish (around 10-%) between 1 (exact value) and the sum of the eigenvalues of the truncated density matrix. This is a
natural way to track the precision of a DMRG calculation, as suggested by White [20].
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Figure 4. Excited states of polyenes.

The PPP evolution with chain length of the lowest-lying excited states of polyenes are depicted in Figure 4. For the
chosen set of parameters (which is widely employed in the literature), there does not exist any N-crossover; for all systems,
the covalent 2A, state is always below 1B,. Note that the “exotic” 2A. state for N=2 is shown in Fig. 4; it is much higher in

energy than both 1B, and twice the lowest triplet state. Most interestingly, we find that the difference between 1B, and 2A,
increases with chain length in the short-chain regime, then levels off, and finally starts decreasing (see Figure 5). In Table 1,
we present the DMRG results which we believe represent the most accurate

theoretical calculations to date.

The 1B,-2A, gap increase in the short-
Kohler developed an extrapolation model and ¢
only half that of 1B,. Since the model is not siz
such an extrapolation is in sharp contradictio
polyacetylene our data on the long polyene

chain regime had been long observed in experiments. Based on such data,
oncluded that in the long-chain limit, the 2A, state energy should appear at
e-consistent and the data are limited to short chains, it is not unexpected that
n with the results of our accurate calculations. In fact, if we extrapolate to

s, the 1B, and 2A, states energies are found to be 2.92 eV and 2.31 eV,
respectively (the difference thus being 0.61 eV). The 2.92 eV value for the 1B, energy is about 1 eV higher than the

experimental result for polyacetylene in solid state. This discrepancy can be ascribed to solid state polarization effects or to
the inadequacy of molecula. parameters for solids. The solid-state polarization effect should be smaller for the 2A, state than
for 1B,, because the former is “covalent” while the latter is ionic. Another aspect is that the solid-state polarization affects
more an anion or cation state (thus, the continuum bandgap) than the 1B, state, which is a bound state of two opposite
charges. This argument leads Moore and Yaron to stress the decreased polarization effect on the 1B, exciton binding energy
[24]; similarly, this effect should also reduce the 1B,-2A, value from gas phase to solid.
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Table 1. Symmetrized DMRG results for the lowest-lying excited state energies (in eV) of polyenes with 4 to 30

carbons. The PPP parameters are t=-2.4 eV, 6=0.07, and U=11.26 eV. All the values correspond to the vertical transition
energies from the 1A, ground state.

N 4 6 8 10 12 14 16 18 20 22 24 26 28 30
1B, 5835 5050 4558 4226 3992 3.819 3.689 3588 3.508 3445 3393 3351 3316 3.287
2A, 5328 4345 3736 3350 3.093 2916 2791 2701 2.634 2584 2547 2518 2496 2478
IT 2655 2167 1.896 1.731 1.623 1549 1497 1458 1429 1407 1390 1376 1.364 1355

4. SYNOPSIS

To conclude, we have employed the accurate numerical density matrix renormalization group technique with
symmetry adaptation to study the ordering of the lowest one-photon and two-photon states in conjugated oligomers and
polymers within an extended Hubbard-Peierls model. Three kinds of crossover, namely a “U-crossover”, a “3-crossover”,

and a “N-crossover”, have been demonstrated. The “N-crossover” is related to quantum finite size effects and crucially
depends on the characteristic length of the excitations.

In addition to these general crossover behaviors, we have shown that when a long-range Ohno potential is applied to
polyene molecules, the evolution of the 2A; and 1B, state energies as a function of chain length, is different fromm the

extrapolation based on a few experimental data for short chains. We find that the gap between 1B, and 2A, first increases for
N<14 carbons, then starts decreasing for N>16.
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