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We theoretically investigate the lattice thermal conductivity of a hollow Si nanowire un-
der the relaxation time approximation. The results show that the thermal conductivity
in such structure is decreased markedly below the bulk value due to phonon confinement
and boundary scattering. The thermal conductivities under different scattering mech-
anisms are given, and it is found that the boundary scattering is dominant resistive
process for the decrease of the thermal conductivity.
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1. Introduction

One-dimensional nanostructures such as nanowires and nanotubes are anticipated

to play a key role in the miniaturization of microelectronic devices and circuits as

well as to provide model systems to demonstrate quantum size effects.1,2 Thermal

conductance of these structures are attracting increasing attention due to its im-

portance in controlling the performance and stability of nanometer devices.3 At

low enough temperatures, the ballistic quantized thermal transport due to the dis-

crete mode structure of the thermal pathway has been studied experimentally4

and theoretically.5–10 As far as diffusive thermal conductance is concerned, many

theoretical investigations have reported the thermal conductivity of semiconduc-

tor nanowires, including Si,11–15 CdTe,16 and GaAs wires.17,18 These studies pre-

dicted that the thermal conductivity of semiconductor nanowires are more about

an order or two orders of magnitude smaller than those of bulk crystals. Recently,

experimental19 and theoretical20,21 studies show that the thermal conductivity of

Si nanowires with diameters of 22–115 nm was more than two orders of magnitude

lower than their bulk value. These works indicate that the thermal conductivity
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         Fig.1  Huang et al.
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Fig. 1. Structure of a hollow Si cylindrical nanowire. ra and rb are inner and outer radii, respec-
tively. z is taken along the axial direction of the nanowire.

depends strongly on the geometry and diameter of the nanowires. In order to study

the effect contributed from the geometric configuration, Zeng et al.22 studied tem-

perature distribution and equivalent thermal conductivity for nano- and micro-thin

films with cylindrical and spherical geometries, and found a significant drop in tem-

perature occuring at interfaces. Using the lattice Boltzmann (LB) method, Jiaung

et al.23 analytically investigated the phonon heat conduction in a free standing,

straight and bent nanoduct. They found that the size effect depends dramatically

on the phonon Knudsen number.

Motivated by these works, the present paper investigates the phonon heat trans-

port along the axial direction in a hollow silicon nanowire, schematically shown in

Fig. 1. The hollow Si nanowire may be a suitable model to simulate a silicon nan-

otube. Although there is still no report about the silicon nanotube being synthesized

experimentally, several theoretical studies have been done to explore the existence

and the properties of silicon nanotubes.24–27 It is predicted that silicon nanotube

can in principle be synthesized. Our results show that the thermal conductivity

decreases with the increase of the inner radius when the outer radius of the hollow

nanowire is fixed. The boundary scattering is dominant resistive process for the

reduction of the thermal conductivity in such a hollow nanowire, and it is more

sensitive to the variation of the inner radius than other scattering such as Umklapp

scattering, mass-difference scattering, or phonon-electron scattering.

This paper is organized as follows: Sec. 2 gives a brief description of the model

and the formulae used in calculations. The calculated results are presented in Sec. 3

with analysis. Finally, a summary is given in Sec. 4.

2. Model and Formalism

A hollow silicon nanowire with inner radius ra and outer radius rb is considered in

Fig. 1. Using the relaxation-time methods by following Klemen’s and Callaway’s

derivation, we can obtain the regular bulk formula for the lattice thermal conduc-

tivity as28,29

κph =
kB

2π2V

(

kBT

~

)3 ∫ θD/T

0

τcx
4ex

(ex − 1)2
dx (1)
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where x = ~ω/kBT , kB is the Boltzmann constant, ~ the Plank constant, θD the

Debye temperature, τc the combined relaxation time, and V the phonon group

velocity.

For simplicity we assume that the material of the hollow nanowire considered

here has an isotropic symmetry and it is independent on the azimuth, and that

the contribution to heat transfer along the axis of the hollow nanowire is mainly

attributed to the longitudinal acoustic phonons modes as a qualitative analysis.

Following the method given by Gazis,30 the phonon dispersion relations can be

obtained. Numerical calculated results show that different branches have different

group velocities. In order to determine the resultant group velocity, we have to

find the functional dependence of the phonon group velocity on phonon energy. We

weight the average group velocity as a function of phonon energy as follows:

V̄ (~ω) ∼=

∑

n

Vn(~ω)Nn(~ω)

∑

n

Nn(~ω)
(2)

where Vn = dωn/dq is phonon group velocity for the nth branch, and ωn the phonon

frequency for the nth branch. Nn(~ω) is the number of oscillators with frequency

ω on the nth mode. Nn is defined by the equilibrium occupancy which is given by

the Bose–Einstein distribution

Nn =
1

exp

(

~ωn

kBT

)

− 1

. (3)

However, rigorous calculation of the overall average phonon group velocity of the

all contributing modes is very difficult. Equation (2) is only an approximation since

the energy spacing for different phonon modes is nonequidistant. In the present

paper, we only take into account the average phonon group velocity coming from

the finite modes, which is enough to be used for the qualitative evaluation of the

lattice thermal conductivity.

In our model, we consider acoustic phonon relaxation in resistive processes, such

as phonon anharmonic interactions (three-phonon Umklapp process), mass differ-

ence (impurities) scattering, phonon-electron scattering, and boundary scattering.

The combined phonon relaxation time τc can be obtained from the Matthiessen’s

rule

τ−1

c = τ−1

U + τ−1

M + τ−1

ph−e + τ−1

B (4)

where τU
−1, τM

−1, τph−e
−1, and τB

−1 are the phonon relaxation rates of the

three-phonon Umklapp, mass difference (impurities), phonon-electron, and bound-

ary scattering, respectively.

By modifying the expression for τU given by Slack31 via introduction of the mod-

ification of group velocity due to the spatial confinement the Umklapp scattering
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rate can be calculated from

1

τU
= α

~γ2ω2T

M0V̄ 2θD
exp

(

−
θD

βT

)

(5)

where γ is the Grüneisen anharmonicity parameter, V̄ is the average phonon group

velocity, and M0 is the average mass of a single atom in the nanowire. There are

two adjustable constants, α and β, which can be adjusted to reproduce the value of

the corresponding bulk material with the formula:32 τU
−1 = 2γ2kBTω2/(µV0ωD),

where ωD is the Debye frequency, V0 is the volume per atom, and the shear modulus

µ, which can be estimated from the formula µ = v2

dρ, where vd is transverse acoustic

speed and ρ is the mass density. The curves calculated by two formulae can be fitted

quite well in the range 300 ≤ T ≤ 800K with α = 5.125 and β = 68.02, which are

used in the following calculation.

Mass-difference scattering arises due to the presence of atoms with a mass

different from the average atomic mass. From the second-order perturbation the-

ory the phonon relaxation rate on point defects is calculated using the following

expression:16

1

τM
=

V0ω
4

4πV̄ 3
Γ =

V0ω
4

4πV̄ 3

∑

i

fi

(

1 −
Mi

M̄

)2

. (6)

Here fi is the relative concentration of the ith type atoms of mass Mi, M̄ =
∑

i fiMi

is the average atomic mass, and Γ is the measure of the strength of the mass-

difference scattering. It is worthwhile to note that the effect of the particular geom-

etry and boundary conditions are considered in Eq. (6) through the modification

of the phonon group velocity.

In our calculation, we consider silicon with a relatively low carrier concentration

of 1018 cm−3. At such a low doping level, the relaxation time for acoustic phonons

scattered by electrons can be written as33

1

τph−e
=

neε
2

1
ω

ρV̄ 2kBT

(

πm∗V̄ 2

2kBT

)1/2

exp

(

−
m∗V̄ 2

2kBT

)

(7)

where ne is the concentration of conduction electrons, ε1 is the deformation poten-

tial, ρ is the mass density, and m∗ is the electron effective mass.

The boundary scattering in a solid nanowire12,14,16 is usually treated in the

Casimir limit in that all phonons that have a positive normal velocity lose the

sense of their directionality and obey the equilibrium distribution when they reach

the boundary. In the Casimir limit, the effective phonon mean free path is given

by λ̄ = D and 1.12L for a circular cylindrical quantum wire of diameter D and

a rectangular quantum wire with a square cross-section with side L in the case

of purely diffuse scattering, respectively.34 For a hollow nanowire, there appears

a new inner boundary with radius ra other than outer boundary. So, phonon can

be scattered not only by the outer wall but also by the inner wall. Based on the

Casimir limit, we suppose that τ , the relaxation time for any other processes except
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boundary scattering, is so long that the phonon will make many trips back and

forth between the walls before it is likely to be scattered internally. Thus, the

possible maximum free path of a phonon is λmax = 2
√

r2

b − r2
a for a hollow nanowire

with fixed inner radius ra and outer radius rb. Since the scattering probability

of the phonon is increased with the increase of the inner radius ra, and reaches

unity when ra = rb, we can assume that the probability of boundary scattering

is proportional to (ra/rb)
p, which p(> 0) acts as a adjusted parameter. The effect

of p on thermal conductivity is discussed numerically in Sec. 3. Therefore, as a

qualitative model, it is reasonable to take the effective boundary mean free path

as λ̄ = 2
√

r2

b − r2
a[1 − (ra/rb)

p]. Then, the boundary relaxation rate in a hollow

nanowire can be expressed as

1

τB
=

V̄

2
√

r2

b − r2
a[1 − (ra/rb)p]

. (8)

It is obviously seen from Eq. (8) that in the limit of ra = 0, the relaxation rate by

boundary scattering is recovered to Casimir formula of a solid nanowire, i.e., τ−1

B =

V̄ /2rb.

3. Numerical Results and Discussion

Firstly, solving numerically the elasticity equation, we can obtain confined phonon

dispersions for a hollow cylindrical Si nanowire. Hereafter, we fix the outer radius

rb = 20 nm. The material parameters used in the calculation are summarized in

Table 1. Then the group velocities can be obtained by numerical differentiation.

Figure 2 shows the average phonon group velocity as a function of the phonon

energy. It is obvious that the average phonon velocity has an oscillation for a small

value of the phonon energy. With the increase of the phonon energy, the oscillation

becomes smaller and gradually approaches a constant value 5.07 × 103 m/s for

Table 1. The material parameters of silicon used in calculation.

Parameter Value Reference

Lattice constant a (nm) 0.543 Ref. ∗

Crystal density ρ (g · cm−3) 2.33 Ref. ∗

Atomic mass M (kg) 46.6 × 10−27 Ref. 11

Grüneisen’s constant γ 0.56 Ref. 11

Velocity of the longitudinal acoustic wave υl (cm/s) 8.47 × 105 Ref. 14

Velocity of the transverse acoustic wave υt (cm/s) 5.34 × 105 Ref. 14

Debye temperature θD (K) 625 Ref. 11

Mass-difference scattering parameter Γ 8.357 × 10−4 Ref. 14

Deformation potential ε1 (eV) 9.5 Ref. 14

Electron effective mass m∗ (m0) 0.26 Ref. 14

Ref. ∗: In Semiconductors-Basic Data, ed. Otfried Madelung, 2., rev. ed. (Springer, Berlin, 1996),
p. 15.
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 Fig. 2 Huang et al. 

Fig. 2. Average group velocity as a function of phonon energy. Solid and dashed lines are for
ra = 5 nm and 10 nm, respectively. Here we take rb = 20 nm.

ra = 5 nm and 4.75 × 103 m/s for ra = 10 nm. The overall value of the average

phonon group velocities are about 4.97×103 m/s and 4.90×103 m/s for ra = 5 nm

and 10 nm, respectively, while 5.13 × 103 m/s for a solid nanowire with diameter

D = 40 nm. These results indicate that the average phonon group velocity decreases

with the inner radius ra for a fixed outer radius.

We now calculate phonon relaxation rates using Eqs. (5)–(8) for a solid nanowire,

and hollow nanowires with inner radius ra = 5 nm and 10 nm, respectively. The

relaxation rates for different scattering mechanisms at 300 K are shown in Fig. 3 as

a function of phonon frequency. It is well known that for bulk material the Umk-

lapp scattering dominates over others for the whole frequency range. However, it

is clearly seen from Fig. 3 that the dominant scattering mechanism in the hollow

nanowires is the boundary scattering when the phonons lie in the range of low

frequencies frequency. Similar conclusions were obtained in the cylindrical12,14 and

rectangular16 nanowires. Comparing Fig. 3(a) with Figs. 3(b) and 3(c), it is found

that the boundary relaxation rate increases with the increasing of the inner ra-

dius ra. This is contributed to the reduction of the mean free path of the phonon

with increasing ra. However, the relaxation rates for the three-phonon Umklapp

and mass-difference scattering increase with the increasing of ra, especially at high
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Fig .3    Huang et al. 
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M 

Fig. 3. Phonon scattering rates due to different scattering mechanisms as function of the phonon
frequency. (a) corresponds to a solid Si nanowire with diameter D = 40 nm, while (b) and
(c) correspond to the hollow Si nanowire with inner radius ra = 5 nm and 10 nm, respectively.
The outer radius of the hollow nanowire is 20 nm. The results are shown for three-phonon Umklapp
(U), mass-difference (M), phonon-electron (ph–e), and boundary scattering at T = 300 K. Here,
p = 1.5.

frequencies, which results from the combined effect of the modification of the av-

erage phonon group velocity and phonon dispersion due to the variation of geom-

etry. These results can be understood from Eqs. (4)–(6). The relaxation rate for

phonon-electron scattering is small compared to those of the above three scatter-

ings. Note that we here take a relatively low carrier concentration (1018 cm−3) in

the calculation. Thus, the effect of phonon-electron scattering on the lattice thermal

conductivity is weak.
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Fig. 4  Huang et al. 

Fig. 4. Lattice thermal conductivity of hollow silicon nanowires as a function of temperature
under different scattering mechanisms. The dash-dotted, solid, and dashed curves correspond to
ra = 0, 5, and 10 nm, respectively. Here, we fix p = 1.5 and the outer radius rb = 20 nm.

Once having obtained the average phonon group velocity and the combined

relaxation time, it is now straightforward to calculate the lattice thermal con-

ductivity of the hollow silicon cylindrical nanowire for the temperature range of

300–800 K by using Eq. (1). Figure 4 shows the phonon thermal conductivity of a

solid nanowire and hollow nanowires with inner radius ra = 5 nm and 10 nm as

a function of temperature. As expected, the lattice thermal conductivities of the

solid and hollow nanowires are much lower than the bulk silicon value in the tem-

perature range T = 300 ∼ 800 K. This is mainly attributed to the reduction of the

group velocity due to spatial confinement and boundary scattering, which has been

demonstrated by many works.11,12,14,16,19,20 To further clearly reveal the origin of

the reduction in heat conductivity, we also show the lattice thermal conductivity

under different scattering mechanisms in Fig. 4. When only Umklapp scattering

process is considered, the thermal conductivity decreases rapidly with the increase

of temperature. Moreover, the thermal conductivity is decreased slightly with the

increase of the inner radius ra. When we further consider mass difference scatter-

ing, phonon-electron scattering, and boundary scattering, the thermal conductivity

continues to decrease. It is obvious from Fig. 4 that the boundary scattering leads

to a dramatic decrease of the lattice thermal conductivity, and the boundary scat-

tering is more sensitive to the variation of the inner radius ra. This indicates that
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Fig. 5. Lattice thermal conductivity of hollow silicon nanowires as a function of p for T = 300 K.
Others are same as in Fig. 4.

boundary scattering is the dominant phonon scattering mechanism in the hollow

nanowire.

To clearly elucidate the effect of the phonon scattering by inner wall on the

thermal conductance, we display the influence of the index p [Eq. (8)] on the thermal

conductivity in the hollow nanowire, as shown in Fig. 5. It can be found that

the thermal conductivity always monotonically decreases with the decrease of the

index p, and the change at small p (<1.5) faster than at bigger p. The thermal

conductivity approaches a constant value When p > 2.5 and p > 3.0 for ra =

5 nm and 10 nm, respectively. These results indicate that the influence of p on the

thermal conductivity is obvious and is different for different inner radius. In fact, the

appropriate value of the index p should be adjusted according to the experimental

thermal conductivity, which is still not be reported as far as we know. Fortunately,

it does not influence the qualitative conclusions made above.

4. Summary

In conclusion, we have presented a numerical calculation of the thermal conduc-

tivity in a hollow silicon cylindrical nanowire. We consider the modification of

phonon dispersion due to the spatial confinement and all important phonon re-

laxation mechanisms, such as three-phonon Umklapp scattering, mass-difference

scattering, phonon-electron scattering, and boundary scattering. At fixed outer

radius, the thermal conductivity always decreases with the increase of the in-

ner radius. The boundary scattering leads to a significant decrease of the lattice
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thermal conductivity, and is the dominant scattering process. In spite of the effect

of Umklapp scattering, mass-difference scattering, or phonon-electron scattering on

the thermal conductivity is dependent on the inner radius, the boundary scattering

is more sensitive to the variation of the inner radius. We think that the present

work will be helpful to understand the properties of the silicon nanotube. Note

that the model is also suitable to deal with similar structures made from other

semiconductor material.
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