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We have implemented the Coupled-Cluster Equation of Motion (CC-EOM) with sin-
gle and double excitations coupled with semiempirical parameterizations, Pariser–Parr–
Pople model and INDO Hamiltonians, to investigate the optical and nonlinear optical
properties, electronic structures and the excited states properties for the conjugated
polymers. The semiempirical parameters allow us to study the conjugated systems with
extensive sizes. Firstly, by comparing with the quasi-exact Density Matrix Renormal-

ization Group theory for the 1D conjugated chain, we find that the CC-EOM approach
can give satisfactory results for both the ground state and the excited states energies.
We demonstrate that our approach can be adopted to evaluate linear and nonlinear
response. We find that both the real and imaginary parts of the third-order polarizabil-
ity can be solved either for static and dynamic responses. Then we apply the CC-EOM
approach to study the optical signatures for the polarons in conjugated polymers. We
have established a solid relationship between the rigidity of a polymer and its optical
signature of the polarons.

Keywords: Conjugated polymer; excited states; coupled-cluster method; organic nonlin-
ear optics; polaron; lattice relaxation.

1. Introduction

Since the pioneering discovery of conducting polymers by Alan Heeger, Alan
MacDiarmid, and Hideki Shirakawa,1 the research in this new kind of materials
has become one of the most intense focus both in academia and in industry. Many
fascinating applications in electrical, mechanical, optical, electronic, opto-electronic
areas have been widely explored. Conducting polymers offer the promise of achiev-
ing a new generation of material, which exhibit the electrical properties of metals
or semiconductors and retain the attractive mechanical properties and processing
advantages of polymers.2 They also provide an opportunity to address fundamental
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questions both in theoretical chemistry and in low-dimensional condensed matter
physics, namely, the bond-length alternation for infinitely long one-dimensional
chain,3 the elementary excitations and topology,4 metal-insulator transition and
Peierls instability,5 correlated low-dimensional electrons,6 competition of electron–
electron interaction and electron-phonon interaction,7 etc.

From theoretical and computational chemistry perspectives, conducting poly-
mers provide challenges and opportunities: the complexity of system, and the rich
and novel properties. Earlier theoretical studies have played important role in
understanding the doping mechanism,8 the electronic structures,9 and design of
novel conducting polymers,10 which had been mostly based on one-electron model.
More elaborate descriptions should properly include the electron–electron corre-
lation effects.11 These effects are important in understanding the opto-electronic
properties. It should be pointed out that recent progresses in Density-Functional-
Theory (DFT) is providing a powerful tool for investigating the conducting poly-
mers, which is out of the scope of this review. Instead, here we focus on discussing
the excited states related electronic structures and optical and opto-electronic prop-
erties for the conjugated polymers.

The excited state structures constitute of a challenge for theoretical and com-
putational chemistry. There were many studies carried out within the framework of
configuration interaction (CI) with single excitations or plus double excitations. CI
in general is not size-consistent, thus an extended application to large system is not
allowed. CASSCF or CASPT2 has been found to be quite accurate in calculating the
low-lying excited states structures for small molecules,12 but quite time-consuming
for relatively large molecules. An alternative way is the time-dependent approach,
based on either the Hartree–Fock or DFT ground state,13 which is equivalent to the
Random Phase Approximation (RPA) for the two-particle Green’s function. The
RPA method is very efficient, and recently, a linear scaling approach has even been
established for the excited states.14 Due to the single-particle excitation character
of the approach, it encounters difficulties in addressing more general excited states,
especially for states with covalent nature.15

In this review, we present our implementation of the coupled-cluster single
and double excitation equation of motion (CCSD-EOM) method and its applica-
tion in both electronic structures and optical properties in conjugated systems.
The model Hamiltonians here are Pariser–Parr–Pople model and semiempirical
INDO Hamiltonian, which are most suitable to describe the electronic states,
the optical and the nonlinear optical properties in conjugated polymer systems.
Firstly, we will show that this method is highly accurate when comparing with
the quasi-exact density matrix renormalization group (DMRG) theory.16 Secondly,
we present a response formalism of CCSD-EOM for the linear and nonlinear
optical properties, which can give numerically converged solutions for both the
real part and the imaginary part of the nonlinear susceptibility.17 Thirdly, we
apply this method to investigate the optical signature of a polaron in conju-
gated polymers. We have established an interesting and practical correspondence
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between the rigidity of the materials and the optical absorption feature of a
polaron.18

2. Formalism

The coupled-cluster single and double excitation (CCSD) equation of motion
(EOM) approach has been shown to be accurate, efficient and size-consistent both
for the molecular ground state and low-lying excited states.19 It can calculate the
ground state, excited states, and the charged states in a single unified frame.

The general electronic Hamiltonian in second quantization form reads:

H =
∑
pq

hpqp
+q +

1
4

∑
pqrs

〈pq| |rs〉 p+q+sr. (1)

Hereafter, we adopt the following convention: indices i, j, k, l, . . . refer to occu-
pied molecular orbitals (MOs); a, b, c, d, . . . to virtual MOs and p, q, r, s, . . . generic
MOs. The two-electron part is given in antisymmetric form: 〈pq||rs〉 = 〈pq|rs〉 −
〈pq|sr〉 and the two-electron integral is defined as:

〈pq|rs〉 =
∫∫

dr1 dr2ϕ
∗
p(r1)ϕ∗

q(r2)
1

r12
ϕr(r1)ϕs(r2),

with ϕ denoting the molecular orbital (MO) wavefunction.

2.1. Ground state

The CCSD ground state ansatz has been proposed as

|CC〉 = exp(T ) |HF 〉 , (2)

where |HF〉 is the Hartree–Fock ground-state Slater determinant, also denoted as
|0〉; and T consists of single and double excitations T = T1 + T2 =

∑
ia tai a+i +∑

i>j
a>b

tab
ij a+ib+j, with t’s being the amplitudes of the excitation configurations.

The exponential ansatz by nature guarantees the size-consistency. The ground-state
energy and the excitation amplitudes are determined by the Schrödinger equation:

H |Ψ〉 = ECC |Ψ〉 , and

H exp(T ) |0〉 = ECC exp(T ) |0〉 . (3)

Multiplying the above equation by 〈0|, we obtain the CCSD energy expression:

ECC = 〈0|H exp(T ) |0〉 = EHF +
∑
i>j
a>b

〈ij| |ab〉 (
tab
ij + tai tbj − tbi t

a
j

)
. (4)

Multiplying Eq. (3) by 〈0|i+a and 〈0|j+bi+a consecutively, we obtain two non-
linear equations through which the t-amplitudes can be solved iteratively,〈

i+a(H − ECC)(1 + T + T 2/2 + T 3/6)
〉

= 0, and (5)〈
j+bi+a(H − ECC)(1 + T + T 2/2 + T 3/6 + T 4/24)

〉
= 0. (6)
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The natural choice of the initial solution is:

tai = 0, tab
ij =

〈ij| |ab〉
εi + εj − εa − εb

. (7)

Substituting the initial solution Eq. (7) into Eq. (4), it is seen that the energy
corresponds exactly to the MP2 approximation.

2.2. Excited states

Based on the CCSD ground state, we can establish the Heisenberg equation of
motion in the Hilbert subspace constructed by promoting one and two electrons
from occupied to virtual MOs. We denote the excitation operators as µ, ν, σ, etc.
The excited-state wavefuntion is constructed as a linear combination of all the single
and double excitations on the CCSD ground state:

|ex〉 =
∑

µ

Rµ exp(T ) |µ〉 , (8)

where |µ〉 = µ|HF 〉 represents an excitation determinant and Rµ is the correspond-
ing coefficient to be determined. The excited-state Schrödinger equation becomes

H |ex〉 = E |ex〉 ; H
∑

v

Rν exp(T ) |ν〉 = E
∑

ν

Rν exp(T ) |ν〉, (9)

where E is the excited state energy. When multiplying the above equation by
exp(−T ) from the left and then multiplying an excitation ket configuration 〈µ|,
we obtain the following eigen-equation:∑

ν

H̄µνRν = ERµ, (10)

where

H̄ = exp(−T )H exp(T )

= H + [H, T ] +
1
2

[[H, T ] , T ] +
1
6

[[[H, T ] , T ] , T ]

+
1
24

[[[[H, T ] , T ] , T ] , T ] (11)

is the similarity transformed Hamiltonian. The expansion terminates exactly after
5 terms, because the two-electron term of the Hamiltonian consists of 4 generic
Fermion operator and each commutation with the excitation operator eliminates
one generic index, thus in the last term of Eq. (11), there is no more generic index
and it commutes with any excitation operator. In fact, in all the mathematics
manipulations, the fact that all the excitation operators commute has been widely
employed. We give the full expression of Eq. (11) in Appendix.

We can extract the ground state energy ECC from the excited state:

E = ECC + ∆Eex. (12)
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Multiplying exp(−T ) from left to Eq. (3), we have H̄ |0〉 = ECC |0〉. Then, we can
recast the Eq. (10) as:∑

ν

{〈ν|H̄ |µ〉Rν − Ecc〈ν|µ〉Rν

}
= Rµ∆E

or ∑
ν

Rν〈ν|[H̄, µ]|0〉 = Rµ∆E. (13)

This is the Heisenberg equation of motion for the effective Hamiltonian. The
similarity transformed Hamiltonian is no longer Hermitian, or under the real basis,
its matrix representation is no longer symmetric. Then, corresponding to each eigen-
value, there exist a right eigenvector and a left eigenvector. The left eigenvector is
expressed as:

〈ex| =
∑
µ1

〈µ|Lµ exp(−T ). (14)

Lµ can be determined in a similar way as for Rµ.
In order to evaluate the physically measurable quantity, we also need the left

eigenvector of the CCSD ground state, i.e. the so-called Λ state in the CCSD gra-
dient theory,20 which is defined as

〈L0| = 〈0|(1 + Λ) exp(−T ),

where Λ =
∑

ia λi
ai+a +

∑
i>j
a>b

λij
abi

+aj+b is the de-excitation operator.

Note that 〈L0|CC〉 = 1. The coefficient λ’s are determined by the Schrödinger
equation for 〈L0|:

〈L0|H = 〈0|(1 + Λ) exp(−T )H = 〈0|(1 + Λ) exp(−T )ECC .

Multiplying exp(T ) η|0〉 to the right of the above equation, we can obtain the
following linear equation: ∑

ν

λνAνµ = −〈0|H̄|µ〉. (15)

From which the Λ amplitudes can be solved for given T amplitudes. This left ground
state is essential for evaluating the physically measurable quantities, for instance,
the optical transition and nonlinear responses.

2.3. Positively charged states

When an electron is ionized from a polymer chain, its eigenstates within the
CCSD-EOM approach can be constructed in the excitation space |σ〉 = {n, g+no},
where indices n, o refer to occupied MOs and g refer to virtual MOs. Then the
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eigenstates are

|p〉 =
∑

σ

Xσ exp(T ) |σ〉 , and (16)

〈p| =
∑

σ

〈σ|Yσ exp(−T ). (17)

To derive the eigen-equation, we insert Eq. (8) to the Schrödinger equation, and
take the coupled cluster ground state energy as the zero point for energy,

(H − Ecc) |p〉 = (E − Ecc) |p〉 , (18)

which yields

(H − Ecc)
∑

σ

Xσ exp(T ) |σ〉 = (E − Ecc)
∑

σ

Xσ exp(T ) |σ〉 . (19)

When multiplying the above equation by exp(−T ) from the left and then multiply-
ing 〈σ|, we obtain the following eigen-equation:∑

ρ

(H̄σρ − ECCδσρ)Xρ = ∆EXσ, (20)

where ∆E = E − ECC is the ionization potential (IP).
Similarly, we can obtain the eigen-equation about Yσ∑

σ

Yσ(H̄σρ − ECCδσρ) = ∆EYρ. (21)

Within the single and double excitation space, for Sz = 1/2, there are six
microstates, which can be linearly combined to form the spin adapted basis. There
are two vectors for S = 3/2, which we do not consider in this work, and four vectors
for S = 1/2:

(i) |mβ〉 , (22a)

(ii)
∣∣c+

α mαmβ

〉
, (22b)

(iii)
(
2
∣∣c+

β mβlβ
〉

+
∣∣c+

α mαlβ
〉

+
∣∣c+

α mβlα
〉)

/
√

6 (with m > l), (22c)

(iv)
(∣∣c+

α mαlβ
〉 − ∣∣c+

α mβlα
〉)

/
√

2 (with m > l). (22d)

The Sz = −1/2 spin eigenstates |σ〉↓ is obtained by exchanging the indices α

and β of eigenstates |σ〉↑.

2.4. Negatively charged states

When attaching an electron to a molecule, we obtain the eigenstates by using |ν〉 =
{e+, e+f+m}, where indices m refer to occupied MOs and e,f refer to virtual Mos.
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Then the eigenstates are

|n〉 =
∑

ν

Uν exp(T ) |ν〉 , and 〈n| =
∑

ν

〈ν|Vν exp(−T ). (23)

Similar to the positive charge states, we can obtain then eigen-equation about
Uν and Vν : ∑

µ

(H̄µν − ECCδµν)Uµ = ∆E′Uν , and (24)

∑
ν

Vµ(H̄µν − ECCδµν) = ∆E′Yν , (25)

where ∆E′ = E − ECC is electron affinity (EA).
The matrix elements for the similarity transformed Hamiltonian H̄µν are eval-

uated in the same way as in the positively charged case, which we omit here.
There are four types of Sz = 1/2 eigenstates |ν〉↑:

(i)
∣∣eα

〉
, (26a)

(ii)
∣∣e+

α e+
β kβ

〉
, (26b)

(iii)
(
2
∣∣e+

α dαkα

〉
+

∣∣e+
α dβkβ

〉
+

∣∣e+
β dαkβ

〉)
/
√

6(d > e), (26c)

(iv)
(∣∣e+

α d+
β kβ

〉 − ∣∣e+
β dαkβ

〉)
/
√

2(d > e). (26d)

The Sz = −1/2 spin eigenstates |ν〉↓ is obtained by exchanging the indices α

and β of eigenstates |ν〉↑.
To verify the accuracy of our implementation of EOM-CCSD, we have made

a comparison with the density matrix renormalization group (DMRG) calculation
on a pi-electron Pariser–Parr–Pople model with long-range Coulomb interaction of
Ohno–Klopman potential. The Hamiltonian reads:

H = −
∑
〈µν〉s

tµν(c+
µ,scν,s + h.c.) + U

∑
µ

nµ↑nµ↓ +
∑
µ<ν

V (rµν)(nµ − 1)(nν − 1), (27)

where t is the pi-electron hopping integral, U is the on-site Hubbard term, and
V is the long-range density–density interaction. The parameters for hydrocarbon
bond are chosen as: U = 11.13 eV, t(double bond) = −2.6 eV, t(single bond) =
−2.2 eV, t(phenyl-ring-bond) = −2.4 eV. For a polyene chain with 20 pi-electrons,
the ground state energy as well as a few optically important excited state energies is
computed within a symmetrized DMRG with ling range interaction and the EOM-
CCSD, and are listed for comparison in Table 1.

The 1Bu state corresponds to the lowest-lying and (optically) most active
exciton state with a large oscillator strength. The 2Ag state is the lowest-lying
even-parity exciton state, which has been described by Tavan and Schulten as a
combination of two triplet excitations.15 In the strong correlation regime where
charge and spin degrees of freedom can be separated, 1Bu is a charge excitation
and 2Ag a spin excitation. In the weak correlation limit, a simple molecular orbital
promotion picture is applied to represent the excited state. Then, the 2Ag state lies
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Table 1. Comparison of the state energies (in eV) of linear polyenes with 20 sites
calculated at the CCSD-EOM and SDMRG levels. The excited state energies are
given relative to the ground state. The Hartree-Fock 1Ag ground state energy is
−40.7979 eV, and the MP2 energy is −42.0602 eV.

1Ag 1Bu 2Ag mAg nBu1 nBu2

DMRG −43.73175 3.450 2.727 5.422 7.205 5.439
CC-EOM −43.60039 3.360 3.270 5.415 7.830 5.715

above the 1Bu state. The fact that both SDMRG and EOM-CCSD give 2Ag below
1Bu manifests the importance of electron correlation, is in good agreement with the
experiments.11 An upper-lying even-parity state, the mAg state is characterized by
a large transition dipole moment with the 1Bu state, which has been shown to be
an even-parity ionic excited state.21

Note that for this model Hamiltonian, the DMRG results can be regarded as
nearly exact.22 From Table 1, we see that the EOM-CCSD results agree very well
with the DMRG, though only the 2Ag state demonstrates the largest deviation,
but the relative ordering with respect to 1Bu is correct.

3. Linear and Nonlinear Optical Responses

Under the electric dipole approximation, the interaction between molecule and a
radiation field can be described by the electric dipole operator:

Ô = −e
∑

i


ri +
∑
A

ZA

RA, (28)

where ri is the position operator for electron, and RA is the position of atomic
nuclear, which is taken as a c-number here. The one-electron operator Ô can be
expressed in second quantization:

Ô =
∑
pq

Opqp
+q, (29)

where Opq =
∫

ψ∗
p(1)O(1)ψqd1, which is obtained within the Hartree–Fock MO

solutions.
Consider a general evaluation of electric dipole transition between two states,

〈m|Ô|n〉 =
∑
µν

Lm
µ Rn

ν 〈µ| exp(−T )Ô exp(T )|ν〉. (30)

Thus, the dipole operator should also be Hausdorff-transformed.
Linear and nonlinear optical responses can be formally expressed as sum-over-

states (SOS) approaches, here, we refer the reader to Orr and Ward’s classical
work,23 which we omitted here. The SOS approach has played a central role in
understanding the linear and nonlinear optical spectra, as well as the microscopic
mechanism and structure-properties relationship. Apart from the SOS approach,
the finite-field or couple-perturbed methods have been widely implemented in
the quantum chemical packages, which in general can give static and sometimes
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dynamic optical susceptibility values. But as far as the spectra and the physical
origins are concerned, the SOS approach is more practical. In many cases, sum-
ming over all states is impractical. An alternative method, which can avoid the
summation over all states, and in principle, the dynamical responses can be eval-
uated. Here, we briefly introduce our implementation of this latter approach, the
so-called correction vector method within the context of EOM-CCSD. We refer the
details of this implementation to Shuai and Brédas,17 and Shuai et al.24

Define two operators F and G:

Fµν = Aµν − (�ω + iΓ)δµν ; Gµν = Aµν + (�ω + iΓ)δµν , (31)

where matrix A is the Jacobian: Aµν = H̄µν−ECCδµν , ω is the frequency of incident
light, and Γ is an empirical damping factor. By solving the following two linear
equations: ∑

ν

Fµνφi
ν(−ω) = 〈µ| eri |0〉 ;

∑
ν

Gµνφi
ν(ω) = 〈µ| eri |0〉 (32)

where superscript i is the Cartesian space coordinate index, we can obtain the
vectors φ’s, the so-called first-order correction vectors. The physical meaning of
this vector is the first-order correction of the ground-state wavefunction upon time-
dependent electric field perturbation. It can be easily shown that the first-order
polarizability is recast from an SOS expression as:

αij(ω) =
∑

µ

{〈0| (1 + Λ)eri |µ〉φj
µ(−ω) + 〈0| (1 + Λ)erj |µ〉φi

µ(+ω)
}

. (33)

Here, we have employed the fact that the eigenfunction matrix that diagonalizes
the Jacobian can also diagonalize the inverse matrices of F and G: F and G are
nothing but Jacobian plus a diagonal constant term. Similarly, we can obtain the
expression for β, the second-order polarizability:

βijk(ω1, ω2) = I1,2

∑
µ

〈0| (1 + Λ)
{
eri |µ〉ψkj

µ (−ω1 − ω2,−ω1)

+ erk |µ〉ψji
µ (ω2, ω1 + ω2) + erj |µ〉ψik

µ (ω1,−ω2)
}

. (34)

I1,2 represents a summation over permutations of (ω1, j) with (ω2, k). The second-
order correction vector ψ is solved by the following linear equation:∑

ν

{Aµν + (�ω1 + iΓ)δµν}ψik
ν (ω1,−ω2) =

∑
σ

(eri)µσφk
σ(−ω2), and so on. (35)

And for the third-order, we can obtain

γijkl(ω1, ω2, ω3) = I123

∑
νσ

{κi
ν(−ω1 − ω2 − ω3)(erl)νσψkj

σ (−ω1 − ω2,−ω1)

+ κl
ν(ω3)(eri)νσψkj

σ (−ω1 − ω2,−ω1)

+ κj
ν(ω1)(erk)νσψil

σ (ω1 + ω2,−ω3) + κj
ν(ω1)(erk)νσψli

σ (ω1

+ ω2, ω1 + ω2 + ω3)}
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− I123{(ρil(−ω1 − ω2 − ω3)ρkj(−ω1) + ρli(ω3)ρkj(−ω1))/

(−ω1 − ω2 − iΓ)

+ (ρjk(ω1)ρil(−ω3) + ρjk(ω1)ρli(ω1 + ω2 + ω3))/

(ω1 + ω2 + iΓ)}, (36)

where I123 represents a summation over permutations of (ω1, j), (ω2, k), and (ω3, l)
(six of them in total). We have introduced two more quantities, the vector κ and
the scalar ρ. They are defined as:∑

ν

{Aνµ + (�ω + iΓ)δνµ}κi
ν(ω) = 〈L0| (1 + Λ)(eri) |µ〉 , (37)

ρij(ω) =
∑

µ

〈L0| (1 + Λ)(eri) |µ〉φj
µ(ω). (38)

In fact, κ differs from φ only due to the non-symmetric nature of the Jacobian.
It should be noted that there occur linear equations of the form Ax =

b in several instances in solving the correction vectors. We apply an algo-
rithm in fully parallel to the Davidson diagonalization scheme in solving these
equations.

For a fixed chain length, N = 30, we have studied the dynamic linear and non-
linear response spectra, using the correction vector approach. The total excitation-
dimensional is of about 150 thousand. For each incident light frequency, all the
correction vector linear equations are solved. Very often, the linear equation is not
stable when the frequency is approaching the resonance, because the matrix is no
more positive definite. To avoid such a divergence, we have introduced a damping
factor, an imaginary term, in to the linear equation, and for the negative frequency
component equation, we have multiplied both sides of the equation by the trans-
pose of the matrix, namely, we transform the Ax = b to be AT Ax = AT b, which
guarantee the matrix to be always positive definite. After doing all these, we find
that our codes are quite stable, and the obtained linear and nonlinear spectra are
depicted in Figs. 1 and 2. The imaginary part of linear polarizability corresponds
to the optical absorption spectra, which convey the message of the excited state
structures. Here, we emphasize that without calculating the excited states, our
approach can obtain the full spectrum. The dispersion curve of the third-order
polarizability for the third-harmonic generation (THG) in Fig. 2 presents rich res-
onance structures, which reveals the three-photon resonances and the two-photon
resonances in THG processes, which has been in the center of interests. Here we
will not go into the details of these structures. Instead, we stress that the EOM-
CCSD-CV calculated spectra are comparable to those obtained in the SDMRG-
SOS approach obtained by Shuai et al., where a few hundreds of excited states
have been calculated.25 While in the present approach, we only need the ground
state and the Hilbert space in which the Hausdorff-transformed Hamiltonian is
expanded.
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Fig. 1. Optical absorption spectrum calculated from EOM-CCSD linear response formulation,
for polyne/PPP model.

Fig. 2. Third-harmonic generation spectrum calculated through EOM-CCSD nonlinear response
formulation for polyene/PPP model: open diamond for the real part, open square for the imagi-
nary part.
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4. Optical Signatures of Charged Conjugated System

The PPP model can describe well the hydrocarbon systems with much less com-
putational efforts than the ab initio method. Another more general simple model
is the INDO Hamiltonian. This method has been found to be very successful in
describing the electronic excitations from organic molecules to transition metals
with semiempirical parameters. We note that the correlation effects dominate the
electronic excitation and its dynamical processes. These effects are usually respon-
sible for the physical origins. Recently, we have also incorporated the EOM-CCSD
formalism with the INDO Hamiltonian,18,26 which give satisfactory results when
comparing with high level treatment such as CASPT2. In Table 2, we make such
a comparison. It is observed that the INDO-EOM-CCSD works quite well and can
be extended to much larger systems than what the ab initio approach can afford.

Charged conjugated species play essential roles in polymer electronics and opto-
electronics. In electroluminescence and field effect devices, charges are injected from
electrodes. Upon addition of positive or negative charges to the conjugated chains,
new electronic states are created. These charges can result from chemical or electro-
chemical doping. Charge injection gives rise to the appearance of spatially localized
geometric defects, the polarons, as a result of the strong electron-phonon coupling
that is characteristic of conjugated chains.5,8 The formation of polarons induces
major modifications in the electronic structure of the conjugated chains (see Fig. 3):
two new localized one-electron levels, i.e., a lower polaron level (POL1) and an
upper polaron level (POL2), appear within the original gap, as shown in Fig. 3.28

For a singly positively (negatively) charged state, the lower (upper) polaron level
is singly occupied. According to the one-electron picture, two new subgap optical
transitions are expected in an oligomer: HOMO → POL1(POL2 → LUMO) and
POL1 → POL2. Here, we apply coupled cluster approach to the description of the
optical properties of a wide range of conjugated systems in their singly-charged
state. Our goal is two-fold: (i) to address the accuracy of our approach for the
calculation of polaron absorption spectra; and (ii) to explore the dependence on
chemical structure of the polaron optical transition energies and intensities.

We report in this section our studies of the optical properties of polarons in
oligomers of polyacetylene (PA), polythiophene (PT), polyparaphenylene (PPP),
and polyparaphenylene vinylene (PPV).18 These polymers are at the center
stage for polymer electronic and optoelectronic applications.29 The systems in
computation are oligomers with increasing number of unit cells. The geometries

Table 2. Comparison of transition energies (in eV) for organic radical cations as calculated
at our semiempirical INDO/EOM-CCSD, INDO/CIS, ab initio CASPT2, TD-DFT levels, and
measurement.27

INDO-EOM-CCSD INDO-CIS CASPT2 TD-DFT(BLYP) Experiments

12Au(ethylene+) 3.01 2.64 3.26
12Au(terthiophen+) 1.23 0.92 1.31 1.65 1.46
22Au(terthiophene+) 1.90 1.87 1.94 2.65 2.25
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HOMO 

LUMO 

POL1 

POL2 

Fig. 3. Schematic one-particle representation of the optical processes in neutral (a), hole polaron
(b), and electron polaron (c) states. The short vertical bars represent electron occupation.

both for neutral and charged states are fully optimized at the semiempirical
Hartree–Fock semiempirical Austin Model 1 (AM 1) level. We illustrate the struc-
tural modifications of the central parts of these oligomers upon geometry relaxation
due to the extra charge in Table 3.

The optical absorption spectrum is simulated by calculating the imaginary parts
of the linear susceptibility:

I(ω)=ω Im[α(−ω; ω)]

=ω Im

[ ∑
m �=g

〈g|µ|m〉〈m|µ|g〉
〈m|m〉

(
1

Em − Eg − �ω − iΓ
+

1
Em − Eg + �ω + iΓ

) ]
,

(39)

Table 3. AM1-optimized geometry deformations in the central part of different
oligomers: C20H22, OT5, OP5, and OPV5. The C–C bond lengths in the neutral
state and the positive polaron state are given in Å; ∆ is the change in bond
length when going from the neutral state to the polaron.

Oligomer Central Part Bond Neutral State Polaron ∆

C20H22 1

2

3 1–2 1.444 1.395 −0.049

2–3 1.347 1.392 0.045

OT5
S

1 2

3
1–2 1.419 1.383 −0.036

2–3 1.390 1.430 0.04

OP5

1 2

3
1–2 1.391 1.373 −0.018

2–3 1.402 1.426 0.024

OPV5

1 2

3
1–2 1.390 1.372 −0.018

2–3 1.406 1.429 0.023
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where m(g) is the index for the excited (ground) state, ω is the frequency of incident
light, µ is the electric dipole operator, and Γ is a broadening factor, which is set to
be 0.05 eV in this study.

The calculated optical absorption spectra for the polaron presented in the series
of oligomers with increasing lengths are depicted in Figs. (4)–(7). From these spec-
tra, one can note that (i) there always appear two sub-gap absorption peaks, the
lower energy peak (LE) and the high energy peak (HE), and (ii) the intensity for
HE for long polyene and thiophene is higher than that of LE, while for long OP and
OPV are in contrast. The origin of these two sub-gap peaks have been analyzed
in Fig. 3, as discussed in previous paragraph. The relative intensity manifests the
competition of electron–electron correlation and electron-phonon interaction. In a
one-electron picture, the LE should be more pronounced than the HE. However,
once electron interaction effect comes to play, the quantum interference between
these optical transitions becomes important. In the EOM-CCSD framework, the
electric dipole transition is expressed as:

〈g |µ |m〉 =
∑
νσ

Lg
σRm

ν

〈
σ
∣∣e−T µeT |ν 〉

=
∑
νσ

Lg
σRm

ν µ̄σν . (40)

For the hole polaron, it is observed from the numerical calculations that (i) the
ground state is dominated by removing a electron from the HOMO (L = 0.95),
(ii) the LE and HE excited states are dominated by the HOMO → POL1 and

Fig. 4. EOM-CCSD/INDO calculated optical absorption spectra of hole polaron in polyenes with

increasing size.
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Fig. 5. EOM-CCSD/INDO calculated optical absorption spectra of hole polaron in
oligothiophenes.

Fig. 6. EOM-CCSD/INDO calculated optical absorption spectra of an electron polaron in
oligophenylenes.
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Fig. 7. EOM-CCSD/INDO calculated optical absorption spectra of a hole polaron in
oligo(phenylenevinylene)s.

POL1 → POL2 transitions, see Fig. 3. This fully supports the configuration inter-
action analysis by Bally et al.30 Then the transition moment can be simplified as:

〈g |µ |m〉 ≈
∑

ν

Rm
ν µ̄1ν ≈ −RHOMO→POL1µ̄HOMO,POL1

+ RPOL1→POL2µ̄POL1,POL2. (41)

Thus, the relative intensities of LE with respect to HE depend on the relative
signs of wavefunction R’s. It is the interference effect to reduce the intensity of
the LE peak. Thus, we can expect that if the polaron geometry relaxation is large,
then from Fig. 3, the two sub-gap transitions are closer in energy, namely, the
separation of LE and HE is larger. In this case, the quantum interference effect
is more pronounced. Namely, the LE intensity becomes lower. In other word, the
relative intensity of LE with respect to HE manifest the polaron relaxation. Thus,
from Figs. 4 and 5, we can directly predict that in polyacetylene and polythiophene,
the electron phonon interaction is large, or the polymer is really soft, which is more
readily to deform upon charge injection. From Figs. 6 and 7, we observe that both
PPP and PPV are relatively rigid polymer. Thus, from our EOM-CCSD analysis,
we propose a practical way to quantify the “electronic rigidity” by measuring the
optical absorption for polaron.

Our INDO/EOM-CCSD calculations cannot only give the above qualitative
picture, but also can be compared with the experiments in a satisfactory way. For
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Fig. 8. Comparison of the LE and HE peak positions as calculated within the INDO/EOM-CCSD
with the experimental results of Bally et al.30

example, in Fig. 8, we plot the calculated and the measured LE and HE peak posi-
tions for polyenes (measured data from Bally et al.30). The overall agreements are
quite satisfactory. Our calculated LE and HE positions are also found in excel-
lent agreement with the experiments for oligothiophene,31 oligophenylene,32 and
oligo(phenylenevinylene)s,33 which we will not discuss in detail here.

5. Summary

To conclude, we have presented our implementation of the semiempirical INDO
coupled cluster equation of motion methods for the excited state properties. We
have developed a nonlinear response theory based on it, and we have shown that
nonlinear response linear equations are convergent even for near resonance region.
We also implemented this approach for charge ionizing or attaching systems and
apply it for calculating the optical absorption for polarons in conjugated poly-
mers. We find that from the relative intensity of the low energy peak and the high
energy peak, one can quantify whether the polymer is soft or not upon charge
injections.
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Appendix: Similarity Transformed Effective Hamiltonian

The coupled cluster effective Hamiltonian for the excited states can be evaluated as:

H̄ = exp(−T )H exp(T ) = H + H1 + H2 +
1
2
H11 + H12 +

1
2
H22 +

1
6
H111 +

1
2
H112

+
1
24

H1111,

where H is the original Hamiltonian and the rest terms are defined as:

H1 =
∑
ai
p

(p+ihpa − a+phip)tai +
1
2

∑
ai
pqr

(a+p+qr 〈pi| |rq〉 + p+q+ri 〈pq| |ar〉)tai ,

H2 =
∑
a>b
i>j
p

(p+ib+jhpa − a+pb+jhip + a+ip+jhpb − a+ib+phjp)tab
ij

+
1
2

∑
a>b
i>j
pqr

(−p+a+qrb+j 〈pi| |rq〉 + p+q+rib+j 〈pq| |ar〉

− a+ip+b+qr 〈pj| |rq〉 + a+ip+q+rj 〈pq| |br〉)tab
ij ,

H11 =
∑
abij

(−b+ihja − a+jhib)tai tbj +
1
2

∑
abij
pq

(p+q+ji 〈pq| |ab〉 + b+a+pq 〈ji| |qp〉

+ 4b+p+qi 〈pj| |aq〉)tai tbj ,

H12 =
∑
ai

b>c, j>k

(−b+ic+khja − b+jc+ihka − a+jc+khib − b+ja+khic)tai tbcjk

+
1
2

∑
ai

b>c, j>k
pq

(−b+a+pqc+k 〈ji| |qp〉 − b+jc+a+pq 〈ki| |qp〉

+ p+q+jic+k 〈pq| |ab〉 + b+jp+q+ki 〈pq| |ac〉
+ 2p+a+qjc+k 〈pi| |bq〉 + 2b+jp+a+qk 〈pi| |cq〉 − 2p+b+qic+k 〈pj| |aq〉
− 2b+jp+c+qi 〈pk| |aq〉)tai tbcjk,

H22 =
1
2

∑
a>b, i>j

c>d, k>l

pq

(c+a+pqb+jd+l 〈ki| |qp〉 + c+kd+a+pqb+j 〈li| |qp〉
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+ p+q+kib+jd+l 〈pq| |ac〉 + c+kp+q+lib+j 〈pq| |ad〉
+ a+ic+b+pqd+l 〈kj| |qp〉 + c+ka+id+b+pq 〈lj| |qp〉
+ a+ip+q+kjd+l 〈pq| |bc〉 + c+ka+ip+q+lj 〈pq| |bd〉
− 2p+a+qkb+jd+l 〈pi| |cq〉 − 2c+kp+a+qlb+j 〈pi| |dq〉
− 2p+c+qib+jd+l 〈pk| |aq〉 − 2c+kp+d+qib+j 〈pl| |aq〉
− 2a+ip+b+qkd+l 〈pj| |cq〉 − 2c+ka+ip+b+ql 〈pj| |dq〉
− 2a+ip+c+qjd+l 〈pk| |bq〉 − 2c+ka+ip+d+qj 〈pl| |bq〉)tab

ij tcd
kl ,

H111 = 3
∑

abc, ijk
p

(b+a+pk 〈ji| |cp〉 − p+a+kj 〈pi| |bc〉)tai tbjt
c
k,

H112 =
∑
ai, bj

c>d, k>l
p

(b+a+pkd+l 〈ji| |cp〉 + c+kb+a+pl 〈ji| |dp〉

− p+c+jid+l 〈pk| |ab〉 − c+kp+d+ji 〈pl| |ab〉 + 2c+a+pjd+l 〈ki| |bp〉
− 2p+a+kjd+l 〈pi| |bc〉
+ 2c+kd+a+pj 〈li| |bp〉 − 2c+kp+a+lj 〈pi| |bd〉)tai tbjt

cd
kl , and

H1111 = 6
∑
abcd

ijkl

b+a+lk 〈ji| |cd〉 tai tbjt
c
ktdl .
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33. Schenk R, Gregorius H, Müllen K, Adv Mater 3:492, 1991.

J.
 T

he
or

. C
om

pu
t. 

C
he

m
. 2

00
5.

04
:6

03
-6

22
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 M

IC
H

IG
A

N
 S

T
A

T
E

 U
N

IV
E

R
SI

T
Y

 o
n 

02
/0

5/
15

. F
or

 p
er

so
na

l u
se

 o
nl

y.


