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Acoustic-phonon transmission and thermal conductance in a double-bend quantum waveguide at
low temperatures are investigated with the use of the scattering matrix method. The calculated
results show that the total transmission coefficient versus the reduced phonon frequency exhibits a
series of resonant peaks and dips. The stop-frequency gap can be observed for certain structural
parameters due to the mode-mode coupling in the bend region. The universal quantum thermal
conductance and the decrease of the thermal conductance at very low temperatures can be clearly
observed. However, for higher temperatures where the higher transverse modes are excited, the
reduced thermal conductance K/T is proportional to temperature 7. The transmission coefficient and
thermal conductance sensitively depend on the geometric parameters of the double bend, which
provide an efficient way to control thermal conductance artificially by adjusting the parameters of

the proposed microstructures. © 2005 American Institute of Physics. [DOI: 10.1063/1.2127122]

I. INTRODUCTION

In recent years, the heat transport by phonons in mesos-
copic systems have attracted much attention. Up to date,
many intriguing investigations of diffusive phonon transport
in various kinds of nanostructures, such as thin ﬁlm,3_6 quan-
tum Well,7 superlattices,&11 nanowires,lzf17 one-dimensional
glass,18 and nanotube'® have been reported. At the same
time, increasing attention is also paid to elucidate ballistic
phonon heat transport in mesoscopic systems. Following
Landauer’s approach to electronic conductance, several
groupszo_24 have derived expressions of thermal conductance
for ballistic phonon transport at low enough temperatures in
an ideal elastic beam and found that the thermal conductance
at low temperatures is dominated by the lowest modes with
zero cutoff frequency and takes a universal value k,,
=7T2k§T/ 3h, analogous to the well-known 2¢2/h electronic
conductance quantum. These predictions have been verified
by experiment.25 More recently, the phonon transmission and
thermal conductance in the quantum waveguide
structures”®*® have been investigated using the scattering
matrix method. Some interesting features are revealed, such
as acoustic -phonon mode splitting behavior and the nonin-
teger quantized thermal conductance in an asymmetric
y-branch three-terminal junction,28 and phonon transmission
and thermal conductance can be controlled by adjusting the
parameters of the stub in a T-shaped waveguide structure.”’

Y Author to whom correspondence should be addressed; electronic mail:
keqiuchen@iccas.ac.cn or keqiuchen@hnu.cn (K.-Q. Chen)
®Electronic mail: zgshuai @iccas.ac.cn (Z. Shuai)
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Motivated by these works, in this paper we investigate
the phonon transmission and thermal conductance in a
double-bend quantum waveguide structure, schematically
shown in Fig. 1. The properties of electron transport in the
same structure have been studied experimentally29 and
theoretically.so’31 It was found that the transmission coeffi-
cient shows strong resonance effects due to the presence of a
perpendicular single right-angle bend. It was also found that
in such a structure the stop-band behavior appears, at which
all electrons are reflected by the double bend. The present
paper is to calculate the phonon transmission and thermal
conductance in such a system by using scattering matrix,”>*
which is an effective method to calculate the electronic or
phonon transport in one-dimensional or quasi-one- dimen-
sional mesoscopic systems. Our results show some interest-
ing physical properties such as periodic transmission spectra,
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FIG. 1. Schematic illustration of the double-bend quantum waveguide
structure.
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stop-frequency gap, resonant peak-dip structures, the univer-
sal quantum thermal conductance, and so on.

This paper is organized as follows. In Sec. II, a brief
description of the model and the necessary formulas used in
the calculations is given. The numerical results are presented
in Sec. III with analyses. Finally, we summarize our results
in Sec. IV.

Il. MODEL AND FORMALISM

The model structure shown in Fig. 1 is divided into three
regions, i.e., region I for x<<0, region II for 0 <x<L, and
region III for x> L. The transverse dimension of the three
regions are for Wy, Wy, and Wy, respectively. We denote the
width and height of the bend as L and H, respectively. It is
assumed that the temperatures in regions I and III are 7 and
T3, respectively, and the difference 6T (6T=T,-T5;>0) is
very small. So we can adopt the mean temperature T[T
=(T,=(T,+T;)/2)] as the temperature of regions I and III in
the following calculations. For the quantum structure de-
picted in Fig. 1, there exist three types of acoustic modes:
longitudinal polarized P mode, vertically polarized SV mode
and horizontally polarized shear SH mode, as expounded by
Graff.*® Their polarization directions are along the x, y, and z
directions, respectively. When P mode transports into the
waveguide, the reflection at the interfaces may lead to the
mode conversion, namely, its reflection wave and the trans-
mission wave may contain both P and SV modes. The situ-
ation is similar to the SV mode incidence. Then the mixing
of P and SV modes would occur. However, considering our
assumption that regions I, II, and III have the same thickness
and are small with respect to the other dimensions and also
to the wavelength of the elastic waves, the horizontally po-
larized shear SH mode is decoupled from the P or SV mode
polarized in the x-y plane. Our previous work investigated
the effect of mode mixing between SV and P modes on the
thermal conductance at low enough temperatures in a T-type
structure.”” The results show that at a low temperature, the
effect of mode mixing on the thermal conductance is very
small, and that the thermal conductance of the SH wave has
similar features to those of the P (or SV) mode. Taking into
account the fact that the present work focuses on the quan-
tized effects on the acoustic -phonon thermal transport fea-
tures at low enough temperatures, so we only discuss the SH
mode.

Considering imperfect contact at the regions I and III the
thermal conductance K takes the form***

eBﬁw

K_EE f (w)( Bho _ 1)2d (1)

Here 7,,(w) is the transmission coefficient from mode m of
region I at frequency w across all the interfaces into the
modes of region III; w,, is the cutoff frequency of the mth
mode, B=1/(kgT), kg is the Boltzman constant, T is the tem-
perature, and 7% is Planck’s constant. The effect of scattering
is introduced through the transmission coefficient 7,,(w).
7,,(w) <1 corresponds to a reduction in the transport due to
the scattering by bend region. Thus, the essential issue in
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predicting the thermal conductance is to calculate the trans-
mission coefficient 7,,(w).

In this paper, we employ the elastic model to calculate
the transmission coefficient of acoustic phonon. Our work
focuses on SH mode propagating in the z direction. In the
elastic approximation, the displacement fields of the decou-
pled SH mode is governed by a single scalar equation:

Viy=—5—. (2)

where the SH wave velocity vgy is related to the mass den-
sity p and elastic stiffness constant Cyy,

—
Usy = VC44/p. (3)

According to the stress-free boundary condition at edges,
n-Vig=0, (4)

where 7 is normal to the edge, the phonon displacement field
equations in the three regions (denoted as ¢/, ¢, and ')
can be expressed as

NI
1 1
Px,y) = 2 [Che™ + Dhe ™ gh(y), (5)
n=1
NII
10 I
Pxy) = 2 [Che™* + Dije ™ "] (). (6)
n=1
and
NIII
P(x,y) = E [ C}Iql[ eikEI(x—L) N D}an e_ikEI(x—L)] ¢L11(y)’ %
n=1

where Cﬁ and Df [& 1, 11, and III] are constants to be deter-
mined by matching the boundary conditions. ¢{(y) repre-
sents the orthogonal transverse mode 7 in region ¢,

[2

Wg N Wgy Y (8)
L

W

(n=0);
kﬁ can be expressed in terms of incident phonon frequency w,
the SH wave velocity vy, and the transverse dimension o
of region & by the energy conservation condition:

2 2
n? (vl
—_— .

We

In principle, the sum over n in Egs. (5)—(7) includes all
propagating modes and evanescent modes (imaginary kﬁ).
However, in the real calculations, we take all the propagating
modes and several lowest evanescent modes into account to
meet the desired precision. The matching conditions are de-
termined by the requirement of continuity of the displace-

ment ¢ and the stress Cyudi/dx at the interfaces I-1I and
II-I11,

Px=0,y) = P (x=0,y), (10)
[0y (x.y)/0x]|,eo = [0 (x.y)/0x] <0 (11)

Bi(y) =

w? = (k&) (v)* + )
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FIG. 2. Total transmission coefficient as a function of the reduced frequency
/A of the incident phonons for the double-bend acoustic waveguide struc-
ture: (a) and (b) correspond to the width L=12 and 6 nm, respectively.
Curves a, b, ¢, and d correspond to the height H=0, 2, 12, and 60 nm in (a)
and H=0, 2, 6, and 60 nm in (b), respectively. Here, we take W;=Wy;
=12 nm. Two consecutive curves are vertically offset for clarity.

Px=Ly) =" (x=Ly), (12)

(o' e, y) 1] p = [0 (x,y) 0x]| oy - (13)

Multiplying Eq. (10) by ¢}(v). Egs. (11) and (12) by ¢, (y),
and Eq. (13) by ¢ (y), respectively, and then integrating
over y, we obtain the equations for the coefficients in Egs.
(5)—(7) required. After rewriting the equations in the form of
a matrix, we can derive the transmission coefficient 7,, by the
scattering matrix method.***

In the following numerical calculations, we employ the
following values of elastic stiffness constant and the mass
density:*  C,4(GaAs)=5.99 (10" Nm™2) and p(GaAs)
=5317.6 (kg m™).

lll. NUMERICAL RESULTS AND DISCUSSION

Figure 2 displays the dependence of the total transmis-
sion coefficients on the reduced frequency w/A for different
bend heights H in the structure, as depicted in Fig. 1. Here,
A=w,,—w,=7mvgy/ W; (vgy is the acoustic wave velocity in
region I) denotes the splitting of the cutoff frequency be-
tween the (n+ 1)th and nth modes in region 1. Hereafter, we
always choose Wi=Wp=12 nm in the calculations. When
the bend is absent, namely, the structure is recovered to a
straight quantum waveguide, curve a in Fig. 2 shows smooth
transmission steps and an abrupt jump is always located just
at an integer-reduced frequency, where a new mode starts to
be excited. These perfect steps show that in such a case there
is no imperfect coupling and ballistic transport through the
structure occurs, which are similar to the electronic transmis-
sion in a similar structure.”’ However, it is clearly seen from
Fig. 2 that when w— 0 the phonon transmission approaches
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unity, unlike the case of electrical transport, where the trans-
mission is always close to zero when the energy of the inci-
dent electron e < g, (g is the threshold energy of the lowest
mode). This results from the stress-free boundary condition
which allows the propagation of the acoustic mode with w
—0, which has also been discussed in detail in Ref. 26.
When H is increased to 2 nm, the transmission plateaus are
observed to resolve into a number of peak-dip structures,
except the first plateaus being almost unchanged. With fur-
ther increase of the height H, the transmission spectrum dis-
play more complex oscillation behaviors [see curves ¢ and d
in Fig. 2(a)], and the lowest plateaus are also destroyed.
Similar behaviors of the ballistic electron transmission have
also been found in the same structure.”* ' These phenomena
can be well understood. Increasing the height of the bend H
leads to a lowering of the cutoff frequency of the propagating
wave along the bend. Thus, more modes can be excited in
the bend when the height of the bend H is higher. These
modes will interfere with each other due to the multiple re-
flection of the phonon waves in the bend region. In general,
the more modes interfere with each other in the bend region,
the more complex are the transmission spectra, especially for
higher frequency. Figure 2(a) also shows that the total trans-
mission coefficients decrease with the increasing height H
except the lowest plateaus, and the change in the higher fre-
quency is faster than that of the lower one. The reason is that
the reflection of the phonons becomes stronger as the height
H is increased. Comparing Fig. 2(a) with 2(b), we can find
that the transmission coefficients become smaller when the
width L is decreased, especially for large H. This can be well
understood. The smaller the width L, the stronger the reflec-
tion of the phonons due to the bend. Consequently, the trans-
mission coefficient decreases. An interesting feature in Fig. 2
is that a dip is always located just before the opening of a
new mode. These dips broaden with the increase of the
height of the bend and some of them gradually develop into
stop-frequency gaps, at which all phonons are reflected by
the double-bend structure. By further calculations, it is found
that the stop-frequency behavior occurs only when H=L,
and only a stop-frequency gap appears when L= W|, while
two stop-frequency gaps can be observed when L<<W; for
large H. The appearance of dip or stop-frequency gap origi-
nates from the coupling between the incident mode and the
reflection mode of the bend. With the increase of the height
of the bend, the coupling becomes stronger between the in-
cident modes and reflection modes due to the increasing of
the strength of the phonon reflections. The stronger the cou-
pling, the broader the width of the dip or stop-frequency gap.
These results may be useful for the design of phonon
devices.

To more clearly reveal the transmission properties of
mode 0, we show the transmission coefficient dependence on
the the height H and the incident phonon frequency w/A for
mode 0 in the system, as shown in Fig. 3. As can be seen, the
transmission coefficients always approach unity as w—0,
indicating that the transmission is independent on the bend
for incident acoustic phonon with w—0. This is actually
anticipated since at w— 0, the wavelength of the phonon is
very large and much larger than the dimension of the scat-
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tering region (i.e., L and Wy); the displacement field ¢ be-
comes essentially the same throughout. From Fig. 3(a), it can
be seen that when L=6 nm the transmission exhibits a peri-
odic pattern as a function of H when 0<w/A<1.0. The
oscillation period AH can be obtain from 2kgyuAH=21,
where kgy=\w?*/ v%H is the wave vector of phonon propagat-
ing along the y direction in region II. For L=15 nm, as
shown in Fig. 3(b), the periodic pattern of the transmission
coefficient is destroyed when w/A>0.7. These results and
further calculations indicate that the range of the frequency
which the transmission exhibits a periodic pattern becomes
smaller as the width of the bend is increased when L
>12 nm.

To further elucidate the dependence of the transmission
coefficients on the bend height H and the width L, the trans-
mission coefficient of the lowest mode with transversal index
n=0 as a function of H for different L and different frequen-
cies are depicted in Fig. 4: (a)-(d) correspond to L=6, 12,
15, and 24 nm, respectively. It is clearly seen from the figure
that changing H or L can cause significant changes in the
transmission for given frequencies. We first consider the case
®/A=1.0. The transmission coefficients show some interest-
ing features: (1) When L<12 nm, the transmission coeffi-
cient decreases rapidly from unity to zero as H is increased.
And the smaller the width L, the faster the decrease of the
transmission coefficient; (2) When 12 <L <24 nm, the trans-
mission coefficients exhibit a periodic oscillation. By calcu-
lations, it is found that the period is decreased with the in-
crease of L; (3) when L=24 nm, the transmission spectra
exhibit a series of nonregular peak-dip structures. By com-
paring the transmission spectra with different w/A, it can be
found that the transmission coefficients and oscillation pe-
riod are strongly dependent on the incident phonon fre-
quency, the width L, and the height H.

We now turn to discuss the effect of the structural pa-

H (nm)
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FIG. 3. Transmission coefficient vs the height H and
the incident phonon frequency w/A for a double-bend
acoustic waveguide structure with Wi=Wy=12 nm,
where A=w,,, - w,=mvgy/ W; (vgy is the acoustic wave
velocity in GaAs) represents the splitting of the cutoff
frequency between the (n+1)th mode and the nth mode
in region L. (a) for L=6 nm; (b) for L=15 nm.

rameters on the thermal conductance. Figure 5 shows the
thermal conductance divided by temperature reduced by the
zero-temperature universal 72k3/3h as a function of the re-
duced temperature kzT/hAgy for different heights H. Figure
5(a) is for the total conductance and Figs. 5(b)-5(d) corre-
spond to the reduced thermal conductance of modes 0, 1, and

1 — o o
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FIG. 4. Transmission coefficient as a function of the height H for different
frequencies: (a)—(d) correspond to L=6, 12, 15, and 24 nm, respectively.
The dash-dotted, dotted, solid, and dashed curves are for w/A=0.3, 0.5, 0.8,
and 1.0, respectively. Here we take H=12 nm.
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FIG. 5. Thermal conductance divided by temperature
reduced by the zero-temperature universal value

mk2/3h as a function of the reduced temperature
kgT/hA for the different heights H. (a) is for the total
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- thermal conductance and (b)—(d) for the thermal con-
K4 ductance of modes 0, 1, and 2, respectively. The dash-
dotted, dotted, solid, and dashed curves correspond to
H=1, 5, 12, and 15 nm, respectively. Here we take L
=12 nm.
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2, respectively. It should be pointed out that the total conduc-
tance is the summation of the thermal conductance of the
first six modes. It can be clearly seen from Fig. 5(a) that as
the temperature 7— 0 where only the transverse mode m
=0 can be excited, the value of thermal conductance K/T
approaches the ideal universal value wzklz;/ 3h and it is inde-
pendent on the geometry of the structure. This indicates that
the scattering of the bend on the long-wavelength acoustic
waves with o — 0 and wave vector k— 0 is very small. For
the structure with H=1 nm, a thermal conductance plateau
appears under low temperatures due to the height of the bend
being far smaller than the width of the main wire and so the
scattering by the bend is very small. With an increase of
temperature 7, the plateau terminates and the value of K/T
linearly increases. This is because the higher transverse
modes m(m>0) are excited and contribute to the thermal
conductance at higher temperatures [as shown in Figs. 5(c)
and 5(d)]. This accords with the fact that at a higher tempera-
ture the energy contributed by each mode is given by classi-
cal equipartition and the two-dimensional heat cavity is pro-
portional to 72, and so the value of K/T«T. It is also
obvious that with an increase of the height H the reduced
thermal conductance K/T shifts down and the thermal con-
ductance plateau disappears, and the change is more sensi-
tive to the smaller H. Further calculations show that when
H>18 nm the reduced thermal conductance was kept almost
unchanged. From Fig. 5(b), it is clearly seen that the reduced
thermal conductance of mode 0 is decreased with the in-
crease of temperature. This can be attributed to the resonance
coupling between the zero mode in the main wire and the
zero mode in the bend region, which leads to the lower trans-
mission coefficient under the given parameters. It is also evi-
dently seen that when H <12 nm the reduction of the re-
duced thermal conductance K/T is very sensitive to the

0.75 1

Reduced Temperature

change of the height H. However, further increasing H, the
change of K/T of mode 0 is very small. On the contrary, the
reduced thermal conductance of the higher modes (i.e., m
=1,2,3,...) increases with temperature. It can also be seen
from Figs. 5(b)-5(d) that the reduced thermal conductance
K/T decreases with the increase of the index m. By calcula-
tion it is found that the reduced thermal conductance of
mode 6 is very small for the explored temperature range.
Therefore only the first six modes can make their contribu-
tions to the total thermal conductance for the explored tem-
perature scope. From Fig. 5(b), it is clearly seen that with the
increase of the height H, the value K/T of the zero mode
decreases monotonically. However, we can find from Fig.
5(c) that the value K/T of mode 1 at H=12 nm is bigger than
that at H=5 nm for the certain temperature range. Similar
phenomena can also be found for mode 2 in Fig. 5(d). In
general, the bigger the height H, the stronger the scattering
of the bend on the phonon modes and the smaller the value
K/T. However, the reverse cases may occur due to the dif-
ferent coupling strengths between the incident modes and the
scattering modes for different indexes of the modes and
temperature.

We now envisage the influence of the bend width L on
the thermal conductance. The calculated total thermal con-
ductance as a function of reduced temperature are depicted in
Fig. 6(a) for different widths L at H=12 nm. It is clear that
the total thermal conductance presents a strong dependence
on the bend width L: The total reduced thermal conductance
decreases rapidly firstly from unity, then increases with the
increase of the reduced temperature, and the change with
smaller width is faster than that with a larger one. However,
when the width L>12 nm (i.e., L> W), a reverse case oc-
curs where the reduced thermal conductance is decreased
with the increase of L at lower temperature (7<0.3). In or-
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Reduced K/T

FIG. 6. Thermal conductance divided by temperature
reduced by the zero-temperature universal value

mk%/3h as a function of the reduced temperature
kgT/hA for the different widths L. (a) is for the total

Reduced K/T

thermal conductance and (b)—(d) for the thermal con-
ductance of modes 0, 1, and 2, respectively. The
dashed, dotted, dash-dotted, and solid curves corre-
spond to L=1, 2, 12, and 15 nm, respectively. Here we
take H=12 nm.
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0
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Reduced Temperature

der to explore these phenomena, we also present the reduced
thermal conductance of individual modes in Figs. 6(b)-6(d).
From Fig. 6(b), we can see that the reduced thermal conduc-
tance of mode 0O increases with the width L when L
<12 nm. However, when L>12 nm, the reduced thermal
conductance decreases with an increase of L at lower tem-
perature (<0.7). From Figs. 6(c) and 6(d), it is clearly seen
that the conductances of modes 1 and 2 increase slowly as
the width L is increased. It is the combination of the three
modes that leads to the behaviors of the total K/T due to it
being contributed mainly by the first three modes, especially
mode 0. According to the results presented above, we can
control the heat conductance to a certain degree by adjusting
the structural parameters, which may be important for appli-
cation in devices.

IV. SUMMARY

In this paper, we have presented a numerical calculation
of the phonon transmission and thermal conductance in the
double-bend quantum waveguide at low temperatures. Some
interesting features are observed. The total transmission co-
efficient versus the reduced frequency exhibits a series of
resonant peaks and dips. When the height is larger than the
width of the bend, the stop-frequency gap appears, at which
all phonons are reflected by the double bend. The stress-free
boundary condition of an acoustic phonon leads to the propa-
gation of the zero mode. When only the zero mode is excited
in the bend region, the transmission spectra will vary peri-
odically with the height of the bend. However, when more
than one mode are excited, the periodicity will be destroyed
due to the mode-mode coupling in the bend region. The total
thermal conductance reaches the universal quantum thermal
conductance at zero temperature, and then decreases with the

0.75 1

Reduced Temperature

increase of the temperature. For higher temperatures where
the higher transverse modes start to contribute to the thermal
conductance, the thermal conductance behaves as K/T«T.
The calculated results show that the total thermal conduc-
tance is also very sensitive to the height and width of the
bend. It is expected that by adjusting the structural param-
eters one can control the transmission spectrum and thermal
conductance of the proposed structure to match practical re-
quirements in devices.
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