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Abstract
Using a transfer matrix method, we study the property of the interface
optical-phonon modes (IOPMs) in a finite semiconductor superlattice (SL)
with a structural defect layer in the dielectric continuum approximation. The
results show that in such a structure there exist two types of localized
IOPMs. They may appear either in the minigap or below and above the bulk
bands, and their macroscopic electrostatic potentials are located in the
vicinity of the defect layer or surface layer. The evolution of the modes
localized in the vicinity of a different interface can clearly be tracked. In
some cases, the degeneracy between localized IOPMs may occur, but the
conservation of the total number of IOPMs is always kept for every value of
the transversal wave number.

1. Introduction

Superlattices (SLs) with structural defects have attracted much
attention due to the novel physical properties found in these
kinds of structures in comparison with perfect SLs. Early in
1981, Combescot and Benoit a la Guillaume [1] studied the
electron–hole state in SL with one or two structural defects.
Since then, many researchers [2–6] explored the behaviours
and properties of electron bound states in various SLs with
structural defects both theoretically and experimentally. The
vibrational properties in such types of structures have also
been investigated extensively. The properties of the localized
acoustic modes have been reported in various structures such
as infinite SL with a structural defect layer [7–9], semi-infinite
SL with a substrate or an adsorbed layer [10] and in finite SL
[11–15]. Since the interface optical-phonon modes (IOPMs)
were found to play a dominant role in electron–phonon
interactions in quantum wells and SLs [16–21], the properties
of the localized and extended IOPMs have been a very
interesting subject in SL with the presence of inhomogeneities

3 Author to whom any correspondence should be addressed.

such as surface, interface or defect layer. The interface optical
phonons in an infinite superlattice [22] and in a finite multilayer
structure [23] were derived. The surface phonon polaritons
in a two-layer semi-infinite superlattice were studied by Bah
et al [24]. The dispersion curves of surface phonons in a
finite superlattice were ascertained [25–27]. The dependence
of surface modes on the outermost layer in semi-infinite and
finite SLs have also been analysed by Streight and Mills [28]
and Tsuruoka et al [29], respectively.

Recently, Chen et al investigated the localized IOPMs
in coupled semi-infinite SL with structural defect layers [30]
and in a semi-infinite SL with a cap layer [31]. Their
works show that for the infinite SL with defect layers the
localized IOPMs always appear in pairs inside the minigap
and possess either symmetric or antisymmetric behaviours
with respect to the centre of the defect layer, corresponding
to longitudinal and transverse vibrations, respectively; while
for the semi-infinite SL, the surface modes may exist inside
the minigap, above or below the bulk band. It is known
from these studies that the formation of the bulk bands in
SL results from the periodicity coupling between two adjacent
dielectric layers, while the localized IOPMs originate from
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Figure 1. A schematic diagram of two semi-finite SLs with an embedded structural defect layer d. Wa,Wb and Wd denote, respectively, the
thickness of constituent layers of the unit cell of the SL and defect layer. The centre of the defect layer is taken as the coordinate origin
(z = 0).

the periodicity-broken coupling due to the existence of the
inhomogeneous layers such as surface, interface or defect
layer. The periodicity-broken coupling leads to the appearance
of new splitting levels. Some of them may lie within the
bulk bands and develop into the delocalized scattering modes,
and the others reside in the minigaps or below and above the
bulk bands, and become localized modes. However, they
cannot track the delocalized scattering modes due to their
works focused on the infinite or semi-infinite SLs where these
modes merge into the bulk bands. To observe clearly the
evolution of the splitting levels due to periodicity-broken
coupling from the localized modes lying in the minigaps to
the delocalized scattering modes (extended modes) in the bulk
bands, the present paper investigates IOPMs in a finite SL with
a structural defect. Note that the discrete characteristics of the
IOPMs in the finite SL enable one to see clearly the evolution
of all the IOPMs with structural parameters or transversal wave
number.

This paper is organized as follows. In section 2, we
present a brief description of the model and necessary formulae
used in calculations. The calculated results are given with
analyses in section 3. Finally, in section 4, a summary is
made.

2. Model and formalism

In fact, the number of the periodicity of the SL is finite in
a real system, which is grown on a substrate and usually
has a cap layer (sometimes serves as a phonon detector
layer). Here, we consider a structure as shown in figure 1,
in which a defect layer labelled as d (material AlAs) with a
thickness of Wd is sandwiched between two finite coupled
SLs with a cell unit composed of a (GaAs) and b (AlAs)
materials, and the substrates are frequency-dependent uniform
dielectric medium (GaAs) labelled as cl and cr , respectively.
The dielectric constants of materials a, b, cl, cr and d are
εa(ω), εb(ω), εl

c(ω), εr
c (ω) and εd(ω), respectively. Wa,Wb

and Wd denote the thickness of constituent layers a, b and
defect layer d, respectively. The number of the period at each
side of the defect layer is n. The period is W = Wa +Wb.

In the present paper, we introduce the transfer matrix
method to investigate the localized IOPMs in the dielectric
continuum model. The dielectric continuum model for
spatially confined systems was first developed by Fuchs and
Kliewer [32]. Strictly speaking, the dielectric continuum
model is valid in the long-wavelength limit in bulk material.
However, this model is a rather good approximation in several
mini-Brillouin-zone (MBZ) scales of wave number q for the
SL structure due to the period of the SL being much larger than
the lattice constant of the bulk materials. This conclusion has

been confirmed by microscopic calculations [17] and Raman
experiments [33]. Regardless of retardation in treatment of
IOPMs, the macroscopic electrostatic potential φ(r) must obey
Laplace’s equation

∇2φ(r) = 0. (1)

As we have translational invariance in the two directions
(x, y) parallel to the interface, and thus each material is
assumed isotropic, the electrostatic potential can be noted
by φ(r) = φ(z) eiq‖y , where q‖ is the component lying on
the (x, y) plane of the propagation vector in the superlattice
�q = (q‖, qz) and is the same for each material in the structure.
For simplicity, we call q‖ the transverse wave number. Then,
we can write down the electrostatic potential in each slab as
follows:

φ(z) = cl exp(q‖(z + Wd/2 + nW))

z � −(Wd/2 + nW), (2)

φ(z) = Bl
n,1 exp(q‖[z + Wd/2 + (n − 1)W + Wa])

+ Bl
n,2 exp(−q‖[z + Wd/2 + (n − 1)W + Wa])

− (Wd/2 + nW) � z � −[Wd/2 + Wa + (n − 1)W ], (3)

φ(z) = Al
n,1 exp(q‖[z + Wd/2 + (n − 1)W ])

+ Al
n,2 exp(−q‖[z + Wd/2 + (n − 1)W ])

− [Wd/2 + (n−1)W + Wa] � z � −[Wd/2 + (n−1)W ],

· · · (4)

φ(z) = D1 exp(q‖z) + D2 exp(−q‖z)
− (Wd/2) � z � Wd/2, (5)

· · ·
φ(z) = Ar

n,1 exp(q‖[z − Wd/2 − (n − 1)W ]) + Ar
n,2

× exp(−q‖[z − Wd/2 − (n − 1)W ])

Wd/2 + (n − 1)W � z � Wd/2 + (n − 1)W + Wa,

(6)

φ(z) = Br
n,1 exp(q‖[z − Wd/2 − (n − 1)W − Wa])

+ Br
n,2 exp(−q‖[z − Wd/2 − (n − 1)W − Wa])

Wd/2 + (n − 1)W + Wa � z � Wd/2 + nW, (7)

φ(z) = cr exp(−q‖(z − Wd/2 − nW))

z � Wd/2 + nW. (8)

In the dielectric continuum model, the electrostatic
boundary conditions are employed to interrelate various
coefficients appearing in the above-mentioned expressions:
the electrostatic potential φ and the normal component of
the displacement field (D = εE) should be continuous at
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Figure 2. The calculated frequencies of the AlAs-like IOPMs as a function of the transversal wave number q‖ for different thicknesses of
defect layer. (a)–(d) correspond to Wd = 5, 10, 15 and 20 nm, respectively. The dashed curves labelled as outer IOPMs(1), and outer
IOPMs(2) represent the IOPMs lying below the lower band and above the upper band, respectively; the dot-dashed curves labelled as inner
IOPMs(1) and inner IOPMs(2) represent the lowest IOPM of the upper band and the highest IOPM of the lower band, respectively; and the
solid curves indicate the rest IOPMs for the finite superlattice. Four dotted curves represent the limits, which correspond to the centre and
edge of the mini-Brillouin zone (i.e., qz = 0 and qz = π/W ), respectively, of the continuous bands for the infinite superlattice with the same
constituent configurations. Here, we take Wa = 20 nm, Wb = 10 nm. The number of the period at each side of the defect layer is n = 5.

each interface. Here, it should be noted in particular that
by using the continuum theory with both electrostatic and
mechanical boundary conditions being fulfilled, Chamberlain
et al [34] and Klimin et al [35] investigated interface optical-
phonon spectra in the superlattice and multilayer structure,
respectively. However, their calculated results for the interface
optical-phonon modes also show that the dielectric continuum
model may be considered as a quite correct first approximation
of continuum theory when the slab thicknesses are much larger
than the lattice constants. Then we can derive the following
equation: (

cl

q‖εl
cc

l

)
= T

(
0
cr

)
, (9)

where

T = T (Wb, εb)T
(n−1)
l M−1(εb)T (Wa, εa)Tad

× TdaT
−1(−Wa, εa)M(εb)T

(n−1)
r T −1(−Wb, εb)C0, (10)

with

T (z, ε) =
(

e−q‖z eq‖z

q‖εe−q‖z −q‖εeq‖z

)
, (11)

M(ε) =
(

1 1
q‖ε −q‖ε

)
, (12)

Tl = M−1(εb)T (Wa, εa)M
−1(εa)T (Wb, εb), (13)

Tr = T −1(−Wb, εb)M(εa)T
−1(−Wa, εa)M(εb), (14)

Tad = M−1(εa)T (Wd/2, εd), (15)

Tda = T −1(−Wd/2, εd)M(εa), (16)

C0 =
(

0 1
0 −q‖εr

c

)
. (17)

By combining equations (9)–(17) , the implicit dispersion
relation for the structure shown in figure 1 is obtained:

T22 − q‖εl
cT12 = 0, (18)

where T12 and T22 are the elements of matrix T. For the binary
crystal AlAs or GaAs, the dielectric function has the form

εi(ω) = ε∞i

(
ω2 − ω2

LOi

)
(
ω2 − ω2

T Oi

) , (i = a, b) (19)

where i corresponds to GaAs (a) or AlAs (b),
ε∞ is optical dielectric constant, ωLOi (ωT Oi) is
the longitudinal (transverse) optical-phonon frequency
of corresponding material. In the calculations, we
employ those values of dielectric constants and phonon
frequencies of GaAs and AlAs referred to [36, 37]:
ε∞(GaAs) = 10.89, ε∞(AlAs) = 8.16, ωLO(GaAs) =
55.045, ωT O(GaAs) = 50.550, ωLO(AlAs) = 76.061,

ωT O(AlAs) = 68.150 Thz.

3. Numerical results and discussion

First, in figure 2, we show the dispersion curves of the AlAs-
like IOPMs for different thicknesses of defect layer d: (a)–(d)
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Figure 3. Modulus of the electrostatic potentials |φ(z)|: curves a–d in figures (a) and (b) correspond to |φ(z)| of the outer IOPMs(1) and
IOPMs(2) for Wd = 5, 10, 15 and 20 nm in figure 2 with q‖Wa = 1, respectively. The vertical dashed lines represent z = 0. For clarity, two
consecutive curves in (a) and (b) have been vertically separated by 0.25 and 0.20, respectively.

correspond to Wd = 5, 10, 15 and 20 nm, respectively.
Here, we take n = 5,Wa = 20 nm, Wb = 10 nm. To show
clearly the relation between the localization characteristics
of the interface modes and their locations falling inside
or outside the bands,the limits, which correspond to the
centre and edge of the mini-Brillouin zone (i.e. qz = 0 and
qz = π/W ), respectively, of the continuous bands for the
infinite superlattice with the same constituent configurations
are also depicted. Note that the continuous bands in the
infinite and semi-infinite SLs will break up into the discrete
modes in the finite SL, so we can clearly observe the total
number for every value of transverse wave number in the
finite SL. For the structure with n = 5, there exist 22 allowed
discrete AlAs-like modes, which fall into two symmetric
bands separated by a minigap. The minigap gradually narrows
with the increase of the transverse wave number q‖, forming
a high density of states for large q‖. From figure 2, it is found
that the boundaries of the band in the structure considered here
are very close to the values found in the infinite superlattice
except in the region q‖ ≈ 0. This results from the fact that the
penetration depth of the phonon amplitude is typically few
periods, but more periods need to be taken into account for
interface phonon modes near the zone centre due to their long
wavelength. Why only five periods at each side of the defect
layer are considered here is because when more periods are
involved, the localized modes and surface modes discussed
below do not vary in characteristics, while it is difficult to
take count of the number of the total IOPMs. In order to
observe the localization degree of the IOPMs, in figures 3 and
4, we map out the moduli of the electrostatic potential |φ(z)|:
figures 3(a) and (b) correspond to the outer IOPMs(1) and
IOPMs(2), while figures 4(a) and (b) to the inner IOPMs(1)
and IOPMs(2) in figure 2 with q‖Wa = 1, respectively.

From figures 2(a) and 3, for Wd = 5 nm, it is clearly seen
that both the outer-IOPM(1) and outer-IOPM(2) lying outside
the band (extended modes) are strongly localized in the vicinity
of the defect layer with even and odd parities, respectively.
We call these IOPMs localized modes. With the increase of
the thickness of the defect layer, the localized modes shift
towards the band edges and the localized degree gradually
weakens. As Wd is equal to 10 nm, namely the structure
is recovered to perfect finite SL, the localized modes (see
figure 2(b)) merge into the band and their electrostatic
potentials are similar to those of the extended modes in
characteristics. With any further increase of Wd , the outer-
IOPMs remain in the extended modes. From figures 2 and 4,
we can also find that, with the increase of the thickness of the
defect layer, both the inner-IOPM(1) and inner-IOPM(2) with
even and odd parities, respectively, gradually extract from the
band and shift towards the centre frequency of the minigap.
Their evolution from the extended modes to the localized
modes can clearly be seen from figure 4. Moreover, we
calculate the moduli of the macroscopic electrostatic potentials
for the rest modes; it is found that these modes mainly localize
in the constituent layers of the finite SL, and are called
the extended modes. We find from our calculations that the
macroscopic electrostatic potentials for all IOPMs alternate
between even and odd parities; this may be attributed to
the fact that the structure considered here is symmetric about
the midplane of the defect layer and so each eigenstate in the
confined system with space-reverse symmetry has a definite
parity as long as the eigenstate is non-degenerated. Note that
all the peaks and valleys in all the moduli of the macroscopic
electrostatic potentials are located at the interfaces and the
bisectors of slabs, respectively, which is similar to the results
presented in [30].
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Figure 4. Moduli of the electrostatic potentials |φ(z)| correspond to the inner IOPMs(1) and IOPMs(2) in figure 2 with q‖Wa = 1,
respectively. For clarity, two consecutive curves in (a) and (b) have been vertically separated by 0.10 and 0.20, respectively. Explanations
for all curves are the same as in figure 3.
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Figure 5. The calculated frequencies of the AlAs-like IOPMs as a function of the transversal wave number q‖ for different widths of
constituent layer b. (a)–(d) correspond to Wb = 4, 8, 12 and 17 nm. Here, Wa,Wd and n are taken as 10 nm, 6 nm and 5, respectively.
Explanations for all curves are the same as in figure 2.

The dispersion curves of the AlAs-like IOPMs for
different Wb are shown in figures 5(a)–(d) correspond to Wb =
4, 8, 12 and 17 nm, respectively. Here, Wa,Wd and n are taken
as 10 nm, 6 nm and 5, respectively. Figures 6 and 7 describe
the moduli of the electrostatic potentials |φ(z)| corresponding
to the outer IOPM(1) and IOPM(2), and the inner IOPM(1) and

IOPM(2) in figure 5 with q‖Wa = 1, respectively. From these
figures, it is clearly seen that the outer IOPM(1) and IOPM(2)
first lie in the bands, and that their wavefunctions are mainly
located in the constituent layers. When increasing Wb, the
outer IOPM(1) and IOPM(2) shift far from the extended modes
and develop into localized modes, their wavefunctions mainly
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Figure 7. Moduli of the electrostatic potentials |φ(z)| correspond to
the inner IOPMs(1) and IOPMs(2) in figure 5 with q‖Wa = 1,
respectively. For clarity, two consecutive curves in (a) and (b) have
been vertically separated by 0.25 and 0.30, respectively.
Explanations for all curves are the same as in figure 6.

localize in the vicinity of the defect layer. With the further
increase of Wb, the localization degree of the outer IOPM(1)
and IOPM(2) in the vicinity of the defect layer becomes
higher. However, for the inner IOPM(1) and IOPM(2) when

Wb < Wa , they shift towards the band in spite of the
minigap becoming small, and these IOPMs in characteristics
change from localized modes to the extended modes. When
Wb > Wa , both the inner IOPM(1) and IOPM(2) develop in
characteristics into two surface modes. And the localization
degree of these surface modes at their corresponding surfaces
become stronger as Wb is increased (see curves c, d in
figures 7(a) and (b)). Here, it should be noted in particular
that in such a structure, interface optical-phonon modes are
divided into extended modes, localized modes and surface
modes according to their macroscopic electrostatic potentials
being mainly localized in the vicinity of constituent layers,
defect layer, or surface in the superlattice. When increasing
the number of layers in the superlattice, the discrete extended
modes gradually come into bands, and the localized modes
and the surface modes lie in the minigap above or below the
band. The existence and features of the localized modes and
surface modes result from the periodicity-broken coupling due
to the existence of the inhomogeneous layers such as defect
layers or surfaces. From figure 5(d), it is clearly seen that with
the increase of transverse wave number the inner IOPM(1) and
IOPM(2) gradually approach each other and finally only one
branch of inner IOPM can be seen in the gap. This behaviour
appears somewhat suspicious in view of the conservation
of the total number of the IOPMs for every value of the
transversal wave number q‖. However, from the evolution of
the macroscopic electrostatic potentials of these IOPMs, it can
be inferred that though both the inner IOPM(1) and IOPM(2)
are of the same frequency, they have different parity. One
of them is symmetric, while the other is antisymmetric with
respect to the centre of the defect layer. So the conservation of
the total number of the IOPMs is still kept. According to the
evolution of the macroscopic electrostatic potentials of these
IOPMs, we can also infer that when Wb is large enough the
degeneracy will occur between both the inner IOPM(1) and
IOPM(2) for the whole range of the transversal wave number
explored here. When Wb is increased, the thickness of the SL
also increases, the interaction will weaken between the surface
excitation localized at the left surface and that at the right
surface in such structure. So the splitting wavelength occurs at
a larger value. Moreover, it is found that when Wb > Wa , two
branches of interface optical phonon modes next to the inner
IOPM(1) and IOPM(2), respectively, fall inside the minigap,
and the calculations show that their localization characteristics
are similar to the localized modes.

These phenomena can be understood from a physical
point of view. For a finite SL with a structural defect layer,
the periodic coupling is locally broken down around both the
surfaces and defect layer. New coupling among them arises.
This periodicity-broken coupling will lead to the appearance
of new splitting levels. They reside in the gaps or below and
above the bulk bands, and develop into localized modes or
surface modes. Their macroscopic electrostatic potentials are
mainly located in the vicinity of the defect layers or surfaces.
The existence and the characteristics of the localized IOPMs
depend on the coupling strength. And the coupling strength
depends on dielectric response characteristics εω (namely, the
nature of the material) of the constituent layers, the relative
thickness and the stack sequence of the SLs, especially the
nature and thickness of the defect layers as intermediate.
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So, for different structural parameters, different localization
characteristics are found. Here, it is worth, in particular,
pointing out that for the structure considered here, the localized
IOPMs exist not only in the minigap but also below and
above the bulk bands, while for the structure presented in
[30], the localized IOPMs exist only in the minigap. This
should be attributed to the different couplings in different
structures. Because the structure considered here is symmetric
about the midplane of the defect layer, therefore, the localized
IOPMs always appear in pairs (odd–even parity pair). These
results tell us that the spectra of the localized IOPMs can be
engineered by adjusting structural parameters.

For GaAs-like localized IOPMs, similar phenomena can
be observed except that the symmetries of the macroscopic
electrostatic potentials φ(z) are just reversed.

4. Summary

In this paper, we have presented the properties of the interface
optical-phonon modes in a finite superlattice with a structural
defect. In the present system, there exist two types of localized
modes. Their macroscopic electrostatic potentials are mainly
located in the vicinity of the defect layer or surface layer,
respectively. The calculated results show that the existence and
characteristics of the localized IOPMs depend on the nature
of the material of the constituent layers, the relative thickness
and the stack sequence of the SLs, especially the nature and
thickness of the defect layers as intermediate. In some cases,
the dispersion curves of some localized IOPMs are joined
together. This looks as if the total number of the IOPMs is
different for different transverse wave vectors. Our results
show that this behaviour results from the degeneracy between
the localized IOPMs. Though they are of the same frequency,
their macroscopic electrostatic potentials are different. So
the number of the total IOPMs including both the delocalized
scattering modes and localized modes is kept for every value
of the wave vector q‖.
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