Structure to Property Relationships for Multiphoton Absorption in Covalently Linked Porphyrin Dimers: A Correction Vector INDO/MRDCI Study

Lingyun Zhu,[†] Yuanping Yi,[†] Zhigang Shuai,^{*,†} Karin Schmidt,[‡] and Egbert Zojer[§]

Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100080 Beijing, P. R. China, Georgia Institute of Technology, School of Chemistry and Biochemistry, Atlanta, Georgia 30332-0400, Institute of Solid State Physics, Graz University of Technology, Petersgasse 16, A-8010 Graz, Austria

Received: April 5, 2007; In Final Form: June 29, 2007

The correction vector method has been used to investigate structure to property relationships for multiphoton absorption properties in covalently linked porphyrin dimers. The electronic structure of the system is described within the multireference single and double configuration interaction (MRDCI) method coupled with the intermediate neglect of differential overlap (INDO) Hamiltonian. We find a strong increase in the two-photon absorption (2PA) and three-photon absorption (3PA) cross sections when going from an isolated porphyrin to the dimers. The nature of the 2PA and 3PA active states as well as the cross sections show a strong but not straightforward dependence on the length of the bridge between the two porphyrins. Our theoretical results are in very good agreement with experimental data for 2PA. The resulting structure to property relationships are analyzed on the basis of essential-state models, where it turns out that a three-state model considering only the Q_x intermediate state proposed in literature does not provide a full description of the actual situation.

I. Introduction

Multiphoton absorption processes are highly promising for a number of processes including optical limiting,¹ 3D microfabrication,² and optical data storage.³ More recently, various porphyrin systems have received particular attention in the context of multiphoton absorption^{4–12} because of their large π electron delocalization, flat structure, and high thermal stability. At the same time, they have been commonly accepted as tumor markers and photosensitizers in photodynamic therapy of cancer (PDT)¹³ for decades and also they can be applied in various photochemical processes that are promising for optical memory and microfabrication.¹⁴ For example, fused diporphyrin,⁵ butadiyne linked-self-assembled porphyrins,⁴ conjugation length extended porphyrin,^{6,12} and aggregated porphyrins⁷ have been extensively investigated, and the reported two-photon absorption cross sections (σ_2) in these range from 100 to 15 000 GM.

Recently, Drobizhev et al.¹⁵ have found that: (1) a series of covalent bridge-linked porphyrin dimers possess extremely large σ_2 , up to 10 000 GM in the near-IR, which is several hundred times larger than that obtained for the corresponding monomer in the same region; and (2) subtly changed π -conjugated bridges in the middle of dimers make a difference to σ_2 values. To better understand the nature of the strong enhancement in these porphyrin systems and the bridge effects in porphyrin dimers, we have implemented the correction vector (CV) method within the multireference single and double configuration interaction (MRDCI) method coupled with the intermediate neglect of differential overlap (INDO) Hamiltonian (MRDCI/INDO) to calculate linear absorption, two-photon absorption (2PA), as well as three-photon absorption (3PA) spectra for the porphyrin monomer and dimers. The structure to property relationships are also explained on the basis of essential-state models.

The most widely used theoretical methods involved in calculating the 2PA or 3PA cross sections (σ_3) are sum-overstates (SOS)¹⁶ and response theory.¹⁷ The SOS approaches involve a truncation in the summation over excited states with the actual number of considered states typically depending on the methodology. This is because that it is virtually impossible to obtain information on all excited states for molecules relevant for practical applications described at the necessary (highly correlated) level of theory. Such truncations may, however, lead to uncontrolled errors in the calculated optical coefficients.¹⁸ The nonlinear response theory has been widely applied in nonlinear optical (NLO) properties and multiphoton absorption calculations.¹⁹ However, it is usually done for a fixed frequency away from any resonant structure due to numerical convergence problems. Time-dependent density functional theory (TDDFT) has also been used to investigate 2PA properties by the Pachter²⁰ and Tretiak²¹ groups. We note that, for third-order NLO properties, due to the self-interaction problems in DFT, the charges are always predicted to be much more delocalized than reality, which results in a much amplified third-order polarizability. Developing a better functional to correct such errors is a current challenge in DFT.²²

The CV method²³ for the computation of general dynamic NLO coefficients is convergent for the full frequency range relevant for multiphoton absorption. The advantage of CV is that one needs only ground-state properties such as energy, wave function, and dipole moment. It gives exactly the same results as if one sums over all the excited states. We have successfully employed the CV method within the MRDCI or the coupled-cluster approximation coupled with either the INDO or the ab initio Hamiltonian to study multiphoton absorption properties.²⁴ It has been shown that the full spectra of 2PA and 3PA can be obtained.

^{*} Corresponding author. E-mail: zgshuai@iccas.ac.cn.

[†] Key Laboratory of Organic Solids, Institute of Chemistry.

[‡] Georgia Institute of Technology, School of Chemistry and Biochemistry.

[§] Institute of Solid State Physics, Graz University of Technology.

II. Theoretical Methodologies

The chemical structures of the molecules studied in the present work are displayed in Figure 1. The alkyl groups of the molecules studied in the experiments¹⁵ are replaced by H atoms in the calculations. The ground-state geometries of all compounds are optimized at the DFT level with the hybrid B3LYP functional and the 6-31G* basis set for C, N, Si, and H and the LANL2DZ basis set for Zn, as implemented in the Gaussian-03 package.²⁵

In the CV method,^{23,24} the NLO coefficients can be obtained on the basis of only the ground-state eigenvalue, eigenvector, and permanent dipole moment. For the first-order polarizability $\alpha_{ij}(\omega)$, starting from the SOS expression, it can be expressed as

$$\begin{aligned} \alpha_{ij}(-\omega;\omega) &= \\ \sum_{R} \left[\frac{\langle G | \overline{\mu_i} | R \rangle \langle R | \overline{\mu_j} | G \rangle}{E_{\rm R} - E_{\rm G} - \hbar \omega - i\Gamma} + \frac{\langle G | \overline{\mu_j} | R \rangle \langle R | \overline{\mu_i} | G \rangle}{E_{\rm R} - E_{\rm G} + \hbar \omega + i\Gamma} \right] \\ &= \left\langle G \left| \overline{\mu_i} \right| \frac{1}{H - E_{\rm G} - \hbar \omega - i\Gamma} \left| \overline{\mu_j} \right| G \right\rangle + \\ &\left\langle G \left| \overline{\mu_j} \right| \frac{1}{H - E_{\rm G} - \hbar \omega + i\Gamma} \left| \overline{\mu_i} \right| G \right\rangle (1) \\ &= \langle \phi_i^{(1)}(-\omega) | \overline{\mu_i} | G \rangle + \langle \phi_i^{(1)}(\omega) | \overline{\mu_i} | G \rangle \end{aligned}$$

where $|\phi_i^{(1)}(\omega)\rangle$ and $|\phi_i^{(1)}(-\omega)\rangle$ are defined through the following first-order correction vectors equation:

$$(H - E_{\rm G} \pm \hbar\omega \pm i\Gamma_1) |\phi_i^{(1)}(\pm\omega)\rangle = \overline{\mu_i} |G\rangle \tag{2}$$

Here, *H* is the CI Hamiltonian; E_G is the ground-state energy, ω is the fundamental input frequencies, and the $\overline{\mu_i}$ are the dipole displacement operators defined as:

$$\overline{\mu_i} = \widehat{\mu_i} - \langle G | \widehat{\mu_i} | G \rangle \tag{3}$$

 Γ denotes a dampling factor (set to 0.1 eV in the calculations). The indices *i* and *j* are Cartesian coordinates. Equation 2 can be directly solved via a Davidson-like algorithm for the "monster" linear equation.^{23,24}

To compute the third-order polarizability $\gamma_{ijkl}(-\omega;\omega,-\omega,\omega)$ and the fifth-order polarizability $\epsilon_{ijklmn}(-\omega;\omega,\omega,-\omega,\omega,-\omega)$ necessary for describing 2PA and 3PA processes, the following equations for the second-order correction vector $\phi_{ij}^{(2)}(\omega_1,\omega_2)$ and the third-order correction vector $\phi_{ijk}^{(3)}(\omega_1,\omega_2,\omega_3)$ have to be solved:

$$(H - E_{\rm G} + \hbar\omega_2 + i\Gamma)|\phi_{ij}^{(2)}(\omega_1, \omega_2)\rangle = \overline{\mu_j}|\phi_i^{(1)}(\omega_1)\rangle \qquad (4)$$

$$(H - E_{\rm G} + \hbar\omega_3 + i\Gamma)|\phi_{ijk}^{(3)}(\omega_1, \omega_2, \omega_3)\rangle = \overline{\mu_k}|\phi_{ij}^{(2)}(\omega_1, \omega_2)\rangle$$
(5)

Finding the solution to eqs 4 and 5 is analogous to solving eq 2; $\gamma_{ijkl}(-\omega;\omega,-\omega,\omega)$ and $\epsilon_{ijklmn}(-\omega;\omega,\omega,-\omega,\omega,-\omega)$ can then be written in terms of the second-order $(\phi_{ij}^{(2)}(\omega_1,\omega_2))$ and third-order correction vector $(\phi_{ijk}^{(3)}(\omega_1,\omega_2,\omega_3))$ as:

$$\gamma_{ijkl}(-\omega;\omega,-\omega,\omega) = P_{ijkl}\langle\phi_i^{(1)}(-\omega)|\overline{\mu_j}|\phi_{kl}^{(2)}(-2\omega,-\omega)\rangle$$
(6)

 $\epsilon_{iiklmn}(-\omega;\omega,\omega,-\omega,\omega,-\omega) =$

$$P_{ijklmn}\langle\phi_{ij}^{(2)}(-2\omega,-\omega)|\overline{\mu_k}|\phi_{lmn}^{(3)}(-3\omega,-2\omega,-\omega)\rangle$$
(7)

The orientationally averaged α_{av} and γ_{av} values are defined as:^{23}

$$\alpha_{\rm av} = \sum_{i=x,y,z} \frac{1}{3} \alpha_{ii} \tag{8}$$

$$\gamma_{\rm av} = \sum_{i,j=x,y,z} \frac{1}{15} \left(2\gamma_{iijj} + \gamma_{ijji} \right) \tag{9}$$

For the molecules studied here, the contribution of *z*-components can be neglected (the *x*-axis is defined as connecting the two central Zn atoms, the *y*-axis is perpendicular to the *x*-axis, and the *xy* plane is parallel to one of the porphyrin planes). As $\gamma_{xxyy} = \gamma_{xyyx}$ and $\gamma_{yyxx} = \gamma_{yxxy}$, the orientationally averaged γ_{av} can be written as:

$$\gamma_{av} = \frac{1}{5} \left(\gamma_{xxxx} + \gamma_{yyyy} + \gamma_{xxyy} + \gamma_{yyxx} \right)$$
(10)

As pointed out by Cronstrand et al.,¹⁹ the numerical calculation for the orientationally averaged fifth-order polarizability, ϵ_{av} , is a formidable task. We have tested the influence of the ϵ_{yyyyyy} component on the 3PA cross section. We find that it does not play any appreciable role for the porphyrin dimers, and thus we will focus only on the ϵ_{xxxxxx} component.

The 1PA, 2PA, and 3PA cross sections, σ_1 , σ_2 , and σ_3 , can finally be derived from the imaginary parts of orientationally averaged α_{av} and γ_{av} and ϵ_{xxxxxx} . They can be expressed as:

$$\sigma_1 = \frac{4\pi(\hbar\omega)L^2}{nc\hbar} \operatorname{Im} \alpha_{av}$$
(11)

$$\sigma_2 = \frac{4\pi^2 (\hbar\omega)^2 L^4}{n^2 c^2 \hbar} \operatorname{Im} \gamma_{av}$$
(12)

$$\sigma_3 = \frac{4\pi^3 (\hbar\omega)^3 L^6}{3n^3 c^3 \hbar} \operatorname{Im} \epsilon_{xxxxxx}$$
(13)

In this contribution, we have used the MRDCI²⁶ method with the semiempirical INDO27 Hamiltonian linked to the CV method to study the one-, two-, and three-photon absorption properties of porphyrin derivatives. The Mataga-Nishimoto potential²⁸ is used to describe the Coulomb repulsion terms. (Parametrizing the Si atom in INDO is probably inappropriate. But from the first-principles DFT calculation for yPy, we find that Si (at the end cap of yPy) does not participate in the active Kohn-Sham orbitals, thus Si's contribution is very minor (see Table S1 in Supporting Information)). Details regarding the choice of the CI-active space and the reference determinants in the INDO/ MRDCI procedure are available in the Supporting Information. In general, we have paid particular attention to choosing a consistent CI-active space and reference set for all studied molecules. Therefore, we have extensively tested effects related to varying the CI space and the number of reference determinants. Because of the large size of the investigated molecules, previously applied approaches including only between 2 (ref 29) and 6 (ref 30) orbitals for multiple excitations could not be applicable here. Therefore, we have extended the capabilities of the ZINDO code by making use of iterative diagonalization schemes. In this work, the CI active spaces consist of up to 12 occupied and 12 unoccupied molecular orbitals, corresponding to more than 300 000 configurations.

III. Results and Discussion

A. Molecular Structures. The DFT geometry optimizations show that, in the monomer (compound yPy in Figure 1), the

Figure 1. Chemical structures of the investigated porphyrin derivatives. The XYZ reference system is also shown.

porphyrin ring is planar and there is a twist of about 70° between the plane of the phenyl ring and that of the porphyrin. When having a single carbon-carbon triple bond bridging the gap between two porphyrin rings (compound PyP), the steric interaction between the closely neighboring β -hydrogens of the porphyrin rings distorts the molecule from planarity,^{15b,31} resulting in a dihedral angle of ca. 36° between the porphyrins. This is in very good agreement with experimental and other DFT optimized results.32 However, by adding another carboncarbon triple bond between the two rings to form the PyyP and yPyyPy dimers, the minimum structures for the porphyrin rings are coplanar again. This increases the conjugation length and should make the backbone more polarizable. Also when an additional benzene ring is inserted into the middle of the two triple bonds of yPyyPy, the molecule yPyByPy remains coplanar. However, when the benzene ring is replaced by an anthracene, steric interactions again become stronger and the plane of the anthracene moiety is twisted by ca. 32° in yPyAyPy. The DFT optimized results for yPyyPy and yPyByPy dimers are in agreement with X-ray investigations.33

B. One-Photon Absorption. i. yPy Monomer. Figure 2a presents the MRDCI/CV calculated one-photon absorption spectrum of the yPy monomer. We find that the linear absorption spectrum in the low-energy region is dominated by a very weak Q_x band at ca. 2.07 eV. There is another very weak band (Q_y) at ca. 1.95 eV, whose oscillator strength is about one-fifth of the main Q_x band. The authors of ref 15 attribute the lowest band at ca. 1.9 eV (646 nm) to a Q_{y} band and the other very weak band at about 2.1 eV (595 nm) to Q_x . The calculated transition energies agree well with the experimental polarized absorption spectrum in the low-energy region.¹⁵ (The slight overestimation of calculated excitation energies is attributed to an overcorrelation of the ground state³⁴ in the MRDCI method.) However, the assignment of the polarization of these two bands is reversed between our study and the previous studies. This is because the assignment in ref 15 is based on calculations³⁵ for the molecule $(Zn_1 - (T)_2 \text{ and } Zn_1 - (TT)_2, \text{ where } R2 \text{ are } H \text{ atoms})$ that is different from our studied yPy molecule (R2 phenyl rings). (To verify our theoretical results, we have performed INDO/SCI calculations on the yPy molecule and the $Zn_1-(T)_2$

Figure 2. MRDCI/CV calculated x-,y-polarized one-photon absorption spectra of the molecules shown in Figure 1.

and $Zn_1-(TT)_2$ molecules in ref 35. For yPy, INDO/SCI calculated results are consistent with our INDO/MRDCI result and show that the oscillator strength of Q_x is larger than that of Q_y ; for $Zn_1-(T)_2$ and $Zn_1-(TT)_2$ monomers, the oscillator strength of Q_y is larger than Q_x , which is in agreement with the calculation results in ref 35; see Table S9 in the Supporting Information.)

In the high-energy region of the linear absorption spectrum, there are two close-lying strong B-bands, B_y and B_x , peaking at ca. 3.15 and 3.19 eV, respectively. The energetic splitting of the B_x and B_y bands is 0.04 eV, which is somewhat smaller than the experimental splitting (B_x at 2.73 eV and B_y at 2.81 eV).¹⁵ When using the above-described (presumably inappropriate) assignment of *x*- and *y*-polarized components in ref 15, the relative oscillator strengths of B_x and B_y would again be reversed between theory and experiment.

ii. Porphyrin Dimers. The MRDCI/CV simulated linear absorption spectra of a series of porphyrin dimers are shown in Figure 2b–f. For *x*-polarized light, all porphyrin dimers show common trends when compared to the monomer: (a) The

oscillator strengths associated with the Q_x bands are drastically enhanced and the peaks are red-shifted, a feature that arises from partial wave function delocalization between the two porphyrins and the benzene or anthracene units. (b) The B_x bands split into two sub-bands; B_{x1} lies between ca. 2.7 and 2.9 eV and B_{x2} is found around 3.5-3.7 eV (see Table 1). These results are in good agreement with the experimental trends,15 which also show that the lowest-energy Q-band is strongly intensified and redshifted, while the B band splits into several sub-bands. (c) The oscillator strengths of B_{x1} are always larger than of B_{x2} . In the experiments, however, the oscillator strength of B_{x1} and B_{x2} is similar in yPyyPy and the intensity ratio is inverted in yPyByPy and yPyAyPy. To test whether this discrepancy results from the limited CI space in the MRDCI calculations, we have also done a SCI calculation with much bigger CI-active spaces (including the highest 70 occupied and the lowest 70 unoccupied orbitals) for yPyByPy and yPyAyPy, but also there we find the oscillator strength associated with B_{x1} always larger than for B_{x2} .

TABLE 1: MRDCI/CV and Tensor Method Calculated One-, Two-, and Three-Photon Absorption Properties of Porphyrin Derivatives^a

		1PA		2PA							3PA				
	CV			CV		tensor		exp		CV		tensor			
compound	Q _x (eV)	B _x (eV)	By (eV)	peak (eV)	σ_2	peak (eV)	σ_2	peak (eV)	σ_2	peak (eV)	$\sigma_{3(xxxxxx)}$	peak (eV)	$\sigma_{3(xxxxxx)}$		
ҮРу	2.07	3.19	3.15	1.52 1.89	46 406	1.52 1.91	25 262	1.46	20	0.70 1.08	0.01 0.16	0.70 1.08	0.01 0.1		
РуР	2.03	2.81 3.60	3.26 3.61	1.48 1.85	1755 8022	1.48 1.86	1692 7098	1.50	8600	0.94 1.21	65 2043	0.94 1.21	14 2450		
РууР	2.03	2.78 3.72	3.26 3.67	1.46 1.86	2175 19473	1.46 1.88	1986 20549	1.48	5500	0.93 1.25	162 5605	0.94 1.25	49 6440		
ҮРууРу	1.98	2.79 3.55	3.22 3.53	1.38 1.79	2205 28655	1.39 1.81	1957 31511	1.40	9100	0.94 1.19	312 6972	0.94 1.19	147 9030		
YPyByPy	2.04	2.92 3.58	3.36 3.86	1.55 1.81	2874 12188	1.56 1.80	2550 9228	1.41	3800	0.98 1.20	252 4212	0.98 1.20	70 4130		
YPyAyPy	2.02	2.72 3.48	3.46 3.84	1.46 1.76	3835 16929	1.46 1.77	3484 15141	1.4 1.47	4000 10100	0.91 1.16	308 5060	0.92 1.17	112 5320		

^{*a*} Experimental 2PA data¹⁵ are also listed. Averaged 2PA cross section in the units of 10^{-50} cm⁴ s (GM) and 3PA cross section of the xxxxx component in the units of 10^{-80} cm⁶ s².

C. Two-Photon Absorption. Figure 3 shows the MRDCI/ CV calculated 2PA spectra of the investigated porphyrin derivatives. In parts a and b of Figure 3, filled squares, open circles, filled triangles, and open triangles show the contributions of the *xxxx*, *yyyy*, *xxyy*, and *yyxx* components of σ_2 of yPy and PyP, respectively. In Figure 3c, we report the averaged 2PA spectra (according to eq 12) for all porphyrin dimers. Table 1 gives the averaged σ_2 values of the porphyrin derivatives.

i. yPy Monomer. For the yPy monomer, there are two 2PA peaks (around 1.52 and 1.89 eV) in the spectral range below linear absorption (see Figure 3a). All four plotted components contribute to averaged signal; the *xxxx* component is dominant in the region of the low-energy peak, while the *yyyy* component is the strongest one at the high-energy peak. The first 2PA maximum is at a photon energy of 1.52 eV; the corresponding averaged σ_2 value at this energy is 46 GM. The second 2PA peak is located at 1.89 eV, which corresponds to the main experimental peak at 1.46 eV, because the photon energy of main 2PA peak is higher than that of the main linear absorption feature in the B-band region. The calculated averaged σ_2 of the second 2PA peak is 406 GM, which is overestimating the experimental value (20GM).

ii. Porphyrin Dimers. From Figure 3b, we find that the longitudinal *xxxx* component of the 2PA amplitude in PyP dimer is several orders of magnitude larger than that of any other tensor component. This can be understood from the increased conjugation along the *x*-axis connecting the two porphyrins.

From parts b and c of Figure 3, one can see that there typically is a double peak structure in the 2PA spectra, with a first peak around 1.5 eV and the high-energy main peak in the region around 1.8 eV. The latter typically has a low-energy shoulder around 1.7 eV. Such a double peak structure is also resolved in several of the experimental spectra, in particular in PyyP and very strongly in yPyAyPy. Both, in the experiments and in the calculations, the lower-energy peak is in the energy region of the lower B_x band, while the higher peak is at a photon energy higher than the main linear absorption feature in the B-band region.

In this context, it should be mentioned that, for centrosymmetric molecules, 2PA states are different from one-photon states due to mutually exclusive selection rules. Thus, while the molecules investigated here have 2PA states that are in the region of certain strongly one-photon active states, they differ from those in their wave function symmetry. For example, in the PyP dimer, the low-energy 2PA state (at $1.48 \times 2 = 2.96$ eV) corresponds to the S₆ excited state, whose description is dominated by a determinant with an electron excited from the HOMO to the LUMO+3 molecular orbital. The corresponding one-photon state (2.81 eV) corresponds to the S₅ excited state, dominated by a transition from the HOMO to the LUMO orbital. It is found that LUMO (Bg) and LUMO+3 (Au) orbitals have inverse symmetry, the HOMO has Au symmetry. That testifies to our results that S₆ is a two-photon allowed excited-state and S₅ is a one-photon allowed but two-photon forbidden excited state.

Several trends can be seen in the calculated spectra: (a) It is noted that, in the experiment, the 2PA peaks of the monomer and the dimers are in similar photon energy ranges. So in the calculation, we should also compare the high-energy 2PA peak of the monomer with the high-energy 2PA peak of the dimers. When going from the monomer, yPy (with $\sigma_2 = 406$ GM at 1.89 eV) to the dimer, yPyyPy, (with $\sigma_2 = 28.7 \times 10^3$ GM at 1.79 eV), there is a nearly 2 orders of magnitude increase in σ_2 . This is fully consistent with the experimental trend (there is \sim 400-fold enhancement in the dimer as compared to the parent monomer), although in the calculations, the σ_2 value is more strongly overestimated for the monomer ($\sigma_2 = 20$ GM at 1.46 eV in the experiment) than for the dimer($\sigma_2 = 9100$ GM at 1.40 V in the experiment). (b) Looking at PyyP, yPyyPy, and yPyByPy, the experimental and theoretical trends are consistent: there is a strong increase in σ_2 (nearly doubling) when going from PyyP (19.5 \times 10³ GM at 1.86 eV) to yPyyPy (28.7 \times 10³ GM at 1.79 eV) both in theory and experiment and σ_2 decrease again in yPyByPy (12.2×10^3 GM at 1.81 eV; in this molecule, the width of the experimental peak, however, seems to be significantly increased). Also the shift of the 2PA peak to lower energies when going from PyyP to yPyyPy and back to a higher energy intermediate between the two in yPyByPy is consistent between experiments and calculations. (c) The absolute values of the cross sections of the strong peaks in PyyP, yPyyPy, and yPyByPy are, however, significantly overestimated by the calculations, while for PyP and yPyAyPy, also the absolute magnitudes in the calculations agree well with those in the experiment.³⁶ This observation is insofar intriguing, as only for PyP and yPyAyPy have steric interactions been found to induce a twist between the planes of the two porphyrins. The

Figure 3. MRDCI/CV calculated two-photon absorption spectra. (a) and (b): filled squares, open circles, filled triangles and open triangles show the contributions of the *xxxx*, *yyyy*, *xxyy*, and *yyxx* components of the two-photon absorption cross section, respectively, for the yPy monomer and the PyP dimer; (c) are the orientationally averaged 2PA spectra for all porphyrin dimers.

reduced conjugation resulting from that twist can then be held responsible for the comparably smaller calculated σ_2 in PyP and yPyAyPy. In the other dimers, there is no steric inhibition to a free rotation around the axis connecting the two porphyrins. This might imply that in the experiments on PyyP, yPyyPy, and yPyByPy in solution, one is dealing not only with planar molecules as assumed here (based on the geometry optimizations neglecting the interaction with the solvent). The reduced conjugation in twisted conformers could then be responsible for the measured "average" cross sections in those three materials being significantly smaller than the calculated one.³⁷

To be able to analyze the results based on essential state models,³⁸ we have compared the CV results with S-tensor³⁹ calculations including 100 excited states. The 2PA cross section, σ_2 (ω), can be expressed according the relationship

$$\sigma_2(\omega) = \frac{4\pi^2(\hbar\omega)^2 L^4}{n^2 c^2 \hbar} \sum_f \left| S_{g \to f}^{ij} \right|^2 \left\{ \frac{\Gamma}{(E_{gf} - 2\hbar\omega)^2 + \Gamma^2} \right\}$$
(14)

where c is the speed of light in vacuum. L denotes a local-filed

correction (equal to 1 for vacuum), $\hbar\omega$ is the photon energy of the incident light, and Γ is a Lorenzian broading factor (set to 0.1 eV in the calculations). S_{g→f} corresponds to the two-photon transition amplitude from the ground state to a final two-photon state $|f\rangle$, with the tensor *ij* component defined as

$$S_{g \to f}^{ij} = \sum P_{ij} \sum_{m} \frac{\langle g | \mu_i | m \rangle \langle m | \mu_j | f \rangle}{E_{gm} - \hbar \omega - i\Gamma}$$
(15)

where $E_{\rm gm}$ corresponds to the excitation energy from the ground state $|g\rangle$ to excited state $|m\rangle$, μ_i is the component of the electric dipole operator along the molecular axis *i*, and P_{ij} denotes a complete permutation of the indices *i* and *j*. For linearly polarized light, the average σ_2 can be written as⁴⁰

$$\sigma_{2}(\omega) = \frac{4\pi^{2}(\hbar\omega)^{2}L^{4}}{15n^{2}c^{2}\hbar} \sum_{f} \left| \sum_{ij} S_{g \to f}^{ii} S_{g \to f}^{jj} \right|^{*} + 2\sum_{ij} S_{g \to f}^{ij} S_{g \to f}^{ij} \left| \left\{ \frac{\Gamma}{(E_{gf} - 2\hbar\omega)^{2} + \Gamma^{2}} \right\} (16) \right|^{*}$$

We find that the trends obtained for σ_2 with the two methods are consistent. Thus we have been able to analyze the dominant channels contributing to $|S_{g \rightarrow f}|^2 (E_{gf})^2 \Gamma / \{(E_{gf} - 2\hbar\omega)^2 + \Gamma^2\}$. It consists of a sum of terms of the type $\mu_{ge}^i \mu_{ef}^j / \{E_{ge} - 1/2 E_{gf}\}$, where the numerator contains the transition dipoles between the ground state an the intermediate state (over which the summation occurs) and the intermediate state and the 2PA active state; the denominator is given by the detuning energy of the respective intermediate state. Γ is a broadening factor, $\hbar\omega$ is the photon energy at the 2PA peak, and E_{gf} is the transition energy from the ground state to the 2PA final state.

Calculating $S_{g \rightarrow f}$ then allows identifying the most important intermediate excited states. In Tables 2 and 3, the dominant channels of the perturbative S-tensor description for 2PA into the main high-energy peak and into low-energy peak are listed. Channels, in which the Q_x , B_{x1} , and B_{x2} states serve as intermediate states, have been found to give rise to the largest relative contribution to the overall σ_2 because they possess large $\mu_{\rm ge}$ and, in case of dimers, also large $\mu_{\rm ef}$ (listed in Tables 2 and 3). Considering these one-photon states for $|S_{g \rightarrow f}|^2$ gives rise to the following: (i) channels involving only the one-photon state Q_x , (ii) channels containing only one type of B_i ($i = x_1$ or x_2) intermediate states, and (iii) mixed channels.38e,41 In the following, they will be referred to as MN channels (with M and N being either Q, B_{x1} , or B_{x2}). Note that the sign of $\mu_{ge} \cdot \mu_{ef}$ into B_{x2} is reversed with respect to $\mu_{ge} \cdot \mu_{ef}$ into B_{x1} and Q for all the dimers (see column 6 and 7 in Table 2). Thus, all channels that involve B_{x2} in combination with either Q or B_{x1} (QB_{x2} and $B_{x1}B_{x2}$ channels, see column 11 and 14 in Table 2) as intermediate states lead to negative contributions to σ_2 .

This analysis provides the following insights: (a) A nearly 2 orders of magnitude increase when going from yPy to the corresponding dimer yPyyPy can then be explained on the basis of individual transition dipoles as well as the detuning energy. As far as the B-channels are concerned, they are strongly enhanced due to the increase of μ_{ge} and much more importantly μ_{ef} . The decrease of the detuning energies ($E_{ge} - E_{ef}/2$) results in a further increased cross section. In yPyyPy, we also observe a much larger contribution from Q-channels (see ratio (QQ + QB_{x1})/(B_{x1}B_{x1}) as seen in the values in Table 2, which is due to the much smaller detuning energies. (b) When considering the combined solely B_{xi}-based channels (i = 1,2) as BB contribution

TABLE 2: Dominant Excited States That Contribute to 2PA into the Main High-Energy Peak^a

compound	final state	intermediate state	$E_{\rm ge}$	$E_{\rm gf}$	$\mu_{ m ge}$	$\mu_{ m ef}$	detuning energy	QQ	QB_{x1}	QB_{x2}	$\mathbf{B}_{x1}\mathbf{B}_{x1}$	$B_{x2}B_{x2}$	$\mathbf{B}_{x1}\mathbf{B}_{x2}$
уРу	S ₉	$ \begin{array}{c} \mathbf{S}_5 \left(\mathbf{B}_y \right) \\ \mathbf{S}_6 \left(\mathbf{B}_x \right) \\ \mathbf{S}_2 \left(\mathbf{Q}_x \right) \end{array} $	3.15 3.19 2.06	3.78 3.78 3.78	$ \begin{array}{r} 12.02(\mu^{y}) \\ -13.15 \\ 1.84 \end{array} $	4.47(μ ^y) 2.23 2.94	1.26 1.30 0.17						
	S ₁₀		3.15 3.19 2.06	3.82 3.82 3.82	$ \begin{array}{r} 12.02(\mu^{y}) \\ -13.15 \\ 1.84 \end{array} $	1.29 -1.44 2.11	1.24 1.28 0.15						
РуР	S ₂₅	$S_1(Q_x) S_5(B_{x1}) S_{19}(B_{x2})$	2.03 2.81 3.6	3.69 3.69 3.69	4.90 -17.43 -7.44	-6.57 9.07 -11.77	0.19 0.97 1.76	0.37	0.69	-0.21	0.32	0.03	-0.20
	S ₂₆	$S_1(Q_x) S_5(B_{x1}) S_{19}(B_{x2})$	2.03 2.81 3.6	3.81 3.81 3.81	4.90 -17.43 -7.44	3.93 -4.53 6.91	0.13 0.91 1.70	0.53	0.60	-0.21	0.17	0.02	-0.11
	S ₁₈	$S_1(Q_x) S_5(B_{x1}) S_{19}(B_{x2})$	2.03 2.81 3.6	3.59 3.59 3.59	4.90 -17.43 -7.44	3.27 -5.56 6.93	0.24 1.02 1.81	0.25	0.71	-0.21	0.50	0.04	-0.29
РууР	S ₂₆	$S_1(Q_x) S_5(B_{x1}) S_{25}(B_{x2})$	2.02 2.78 3.72	3.73 3.73 3.73	5.71 18.72 -8.01	9.03 12.90 15.63	0.16 0.92 1.86	0.40	0.63	-0.16	0.25	0.02	-0.14
	S ₁₇	$S_1(Q_x) S_5(B_{x1}) S_{25}(B_{x2})$	2.02 2.78 3.72	3.60 3.60 3.6	5.72 18.72 -8.01	6.64 6.09 5.84	0.22 0.98 1.92	0.43	0.57	-0.12	0.19	0.01	-0.08
уРууРу	S ₂₄	$ S_1(\mathbf{Q}_x) \\ S_6(\mathbf{B}_{x1}) \\ S_{22}(\mathbf{B}_{x2}) $	1.97 2.78 3.55	3.62 3.62 3.62	8.31 -18.42 8.92	-6.90 7.09 9.13	0.16 0.97 1.74	0.66	0.48	-0.17	0.09	0.01	-0.07
	S ₂₃	$S_1(Q_x) S_6(B_{x1}) S_{22}(B_{x2})$	1.97 2.78 3.55	3.58 3.58 3.58	8.31 -18.42 8.92	6.82 -9.02 -11.18	0.18 0.99 1.76	0.55	0.58	-0.20	0.16	0.02	-0.11
	S ₂₁	$S_1(Q_x) S_6(B_{x1}) S_{22}(B_{x2})$	1.97 2.78 3.55	3.55 3.55 3.55	8.31 -18.42 8.92	-6.57 10.55 12.98	0.20 1.01 1.78	0.47	0.65	-0.22	0.22	0.03	-0.15
	S ₁₃	$S_1(Q_x) S_6(B_{x1}) S_{22}(B_{x2})$	1.97 2.78 3.55	3.36 3.36 3.36	8.31 -18.42 8.92	-9.78 9.40 8.25	0.29 1.10 1.87	0.50	0.56	-0.14	0.16	0.01	-0.09
yPyByPy	S ₁₉	$S_5(B_{x1})$ $S_{18}(B_{x2})$ $S_1(Q_x)$	2.92 3.58 2.04	3.60 3.60 3.60	-20.27 6.81 -6.80	13.89 24.97 5.07	1.12 1.78 0.24	0.23	0.81	-0.31	0.70	0.10	-0.53
	S ₁₇	$S_5(B_{x1}) \\ S_{18}(B_{x2}) \\ S_1(Q_x)$	2.92 3.58 2.04	3.56 3.56 3.56	-20.27 6.81 -6.80	10.55 19.63 3.18	1.14 1.8 0.26	0.18	0.81	-0.32	0.91	0.14	-0.72
yPyAyPy	S ₁₂	$S_1(Q_x) S_5(B_{x1}) S_{11}(B_{x2})$	2.01 2.71 3.47	3.52 3.52 3.52	8.70 17.72 9.81	-8.29 -10.50 12.21	0.25 0.95 1.71	0.48	0.66	-0.24	0.22	0.03	-0.15
	S_8	$S_1(Q_x)$ $S_5(B_{x1})$ $S_{11}(B_{x2})$	2.01 2.71 3.47	3.42 3.42 3.42	8.70 17.72 9.81	5.93 8.57 -2.03	0.30 1.00 1.76	0.30	0.54	-0.04	0.24	0.00	-0.04
	S ₁₅	$S_1(Q_x)$ $S_5(B_{x1})$ $S_{11}(B_{x2})$	2.01 2.71 3.47	3.63 3.63 3.63	8.70 17.72 9.81	1.42 10.38 -16.92	0.20 0.90 1.66	0.14	0.92	-0.45	1.49	0.35	-1.45

^{*a*} Listed are the INDO/MRDCI calculated excitation energies (eV) of 2PA-active and intermediate states and transition dipoles (Debye); if not specified, the component along the *x*-direction of the transition dipole moment is quoted. For dimers, we also give the relative participations of resulting 2PA channels for the dimers; channels involving Q_x as intermediate state are denoted as QQ, channels with B_{xi} (*i* = 1,2) intermediate state as $B_{xi}B_{xi}$ channels and mixed channels with Q_x , B_{x1} , or B_{x2} as one of the intermediate states as QB_{xi} and $B_{x1}B_{x2}$ channels, respectively.

and the combined QB_{x1} and QB_{x2} channels as QB contribution, it becomes evident from Table 3 that the low-energy 2PA peak is dominated by QB, whose contribution is ca. 50% throughout the dimers. The remaining 50% are provided by BB and QQ channels, whose ratio can vary between 0.45 (PyP) and 1.7 (yPyyPy). (c) For the main high-energy peak (which is a superposition of 2PA into several excited states), we find that typically both Q- and B-based channels significantly contribute to the 2PA response. The former play a strong role due to the much smaller associated detuning energies, while the latter are strong because of the larger transition dipoles from the B_x states both to the ground as well as to the 2PA states. The relative contributions vary significantly from molecule to molecule (see Table 2), which makes an analysis based on a three-state model with Q_x as the intermediate state without considering B_x states (as in ref 15) somewhat problematic.

The trends for the main peak of the dimers will first be discussed for the planar molecules (PyyP, yPyyPy, and yPy-

TABLE 3: Dominant Excited States That Contribute to 2PA into the Main Low-Energy Peak^a

	final	intermediate					detuning						
compound	state	state	$E_{\rm ge}$	$E_{ m gf}$	$\mu_{ m ge}$	$\mu_{ m ef}$	energy	QQ	QB_{x1}	QB_{x2}	$\mathbf{B}_{x1}\mathbf{B}_{x1}$	$\mathbf{B}_{x2}\mathbf{B}_{x2}$	$\mathbf{B}_{x1}\mathbf{B}_{x2}$
уРу	S_4	$ \begin{array}{c} \mathbf{S}_6 \left(\mathbf{B}_x \right) \\ \mathbf{S}_5 \left(\mathbf{B}_y \right) \\ \mathbf{S}_2 \left(\mathbf{Q}_x \right) \end{array} $	3.19 3.15 2.06	3.13 3.13 3.13	-13.15 12.02(μ^{y}) 1.84	$ \begin{array}{r} 1.85(\mu^{y}) \\ -1.97 \\ 3.34(\mu^{y}) \end{array} $	1.63 1.59 0.50						
	S ₃	$ \begin{array}{c} \mathbf{S}_6 \left(\mathbf{B}_x \right) \\ \mathbf{S}_5 \left(\mathbf{B}_y \right) \\ \mathbf{S}_2 \left(\mathbf{Q}_x \right) \end{array} $	3.19 3.15 2.06	3.01 3.01 3.01	-13.15 12.02(μ^{y}) 1.84	-1.38 $-1.37(\mu^y)$ 3.11	1.69 1.65 0.56						
РуР	S ₆	$S_5(B_{x1})$ $S_{19}(B_{x2})$ $S_1(Q_x)$	2.81 3.60 2.03	2.95 2.95 2.95	-17.43 -7.44 4.90	-14.13 23.07 9.05	1.34 2.13 0.56	0.19	0.87	-0.38	1.01	0.19	-0.88
РууР	S ₆		2.78 3.72 2.02	2.91 2.91 2.91	18.72 -8.01 5.72	13.92 22.64 8.41	1.33 2.27 0.57	0.18	0.82	-0.34	0.95	0.16	-0.77
уРууРу	S ₅	$S_6(B_{x1})$ $S_{22}(B_{x2})$ $S_1(Q_x)$	2.78 3.55 1.97	2.76 2.76 2.76	-18.42 8.92 8.31	-14.10 -23.05 8.51	1.40 2.17 0.59	0.32	1.00	-0.51	0.78	0.20	-0.79
уРуВуРу	S ₆	$S_5(B_{x1}) S_{18}(B_{x2}) S_1(Q_x)$	2.92 3.58 2.04	3.10 3.10 3.10	-20.27 6.81 -6.80	14.47 26.34 6.70	1.37 2.03 0.49	0.18	0.83	-0.34	0.96	0.16	-0.79
yPyAyPy	S ₆	$S_5(B_{x1})$ $S_{11}(B_{x2})$ $S_1(Q_x)$	2.71 3.47 2.01	2.90 2.90 2.90	17.72 9.81 8.70	-19.07 25.44 -9.41	1.26 2.02 0.56	0.25	0.93	-0.43	0.85	0.18	-0.78

^{*a*} Listed are the INDO/MRDCI calculated excitation energies (eV) of 2PA-active and intermediate states and transition dipoles (Debye); if not specified, the component along the *x*-direction of the transition dipole moment is quoted. For dimers, we also give the relative participations of resulting 2PA channels for the dimers; channels involving Q_x as intermediate state are denoted as QQ, channels with B_{xi} (*i* = 1,2) intermediate state as $B_{xi}B_{xi}$ channels and mixed channels with Q_x , B_{x1} , or B_{x2} as one of the intermediate states as QB_{xi} and $B_{x1}B_{x2}$ channels, respectively.

ByPy). In the first two molecules, there come significant contributions from QQ channel(s). They are particularly enhanced in yPyyPy, in which they exceed 50% mostly to the cost of all $B_{xi}B_{xj}$ -related channels (i, j = 1, 2) caused by the much larger transition dipole moment μ_{ge} for the Q_x state (with similar detuning energies for the S_{26} state in PyyP and the S_{21} , S_{23} , and S_{24} states in yPyyPy). The combined contribution of QB_{xi} channels is at least 30% (up to 43% in S₂₁ of yPyyPy, compare to 40-49% in PyyP) and remains essential, even though it is somewhat diminished with respect to PyyP, whose μ_{ef} are larger than in yPyyPy. The larger number of 2PA active states in the relevant energy region in yPyyPy also results in some increase in σ_2 . These aspects are responsible for the overall increase of the cross section in yPyyPy compared to PyyP. In yPyByPy, the Q-channel contributions are particularly small due to relatively large detuning energies and small μ_{ef} . This cannot be fully compensated by B-channel contributions, among which we observe despite their large μ_{ge} and μ_{ef} a strong compensation of B_{x1} - and B_{x2} -based channels, resulting in a smaller overall cross section.

In the two nonplanar dimers PyP and yPyAyPy, the larger cross section in the latter molecule can be mainly explained by a low-lying S₈ state in which $|\mu_{ef}|$ from B_{x2} is substantially smaller than its counterpart from B_{x1}; typically, as seen in all other cases listed in Table 2, $|\mu_{ef}|$ from B_{x2} largely exceeds the one into B_{x1}. Therefore, B_{x2}-related channels do not compensate for the B_{x1}-based cross section, whose associated dipole moments are appreciably larger than in PyP due to the enhanced conjugation length. Additionally, also μ_{ge} for the Q-channel in yPyAyPy becomes larger than in PyP, being partly compensated by a larger detuning energy. The main conclusion from the above considerations is that, in the series of dimers, the actually calculated trends for cross sections strongly depend on a subtle interplay between the evolutions of transition dipoles (and for the Q-channels, which are much closer to a double-resonance

situation, also the trends for the detuning energies). This makes a detailed analysis of the actual origin of the trends virtually impossible and also implies that the very details of the obtained trends can be significantly influenced by changing "external" parameters, like the molecular conformation (see above), or possibly also by using different computational methodologies.

D. Three-Photon Absorption. Figure 4 shows the *xxxxxx* components of the MRDCI/CV calculated 3PA spectrum of the investigated porphyrin derivatives. Considering that the *xxxxxx* component dominates the overall response, the expected cross section for an isotropic solution corresponds to $1/_7$ of the values in Figure 4.^{19a}

i. yPy Monomer. At this point, it should be mentioned that due to symmetry selection rules in centrosymmetric molecules, the one-photon allowed states are also 3PA active. For the monomer (yPy), there is thus a very weak 3PA peak for absorption into the Q_x band at ca. 0.70 eV and a second, stronger 3PA into the B_x band at ca. 1.07 eV (compare Table 1).

ii. Porphyrin Dimers. In the porphyrin dimers, 3PA into Q_x band remains very weak; therefore, the corresponding energy range (photon energies below 0.7 eV) is not shown in Figure 4. In the region of the B_x bands of the porphyrin dimers, there are two 3PA peaks; the lower-energy 3PA peak between 0.90 and 1.00 eV corresponds to excitation into the B_{x1} state and the second (higher-energy 3PA peak between 1.15 and 1.25 eV) corresponds to excitation into B_{x2} . (At the high-energy limit of the plots, the onset of another strong peak is observed for several of the materials; at these energies, however, one approaches a triple resonance situation, which makes those states difficult to access experimentally. They will thus not be further discussed.) The 3PA cross section for excitation into B_{x1} is increased by about 3 orders of magnitude compared to excitation into the B_x state of the monomer. σ_3 for B_{x2} is further increased by more than an 1 order of magnitude. The largest longitudinal component of σ_3 in the investigated energy range is found for yPyyPy

Figure 4. MRDCI/CV calculated *xxxxx* component of the three-photon absorption spectra of (a) the monomer and (b) the dimers.

around 1.2 eV, corresponding to 7.0 $\times 10^{-77}$ cm⁶ s² (the averaged σ_3 is 1.0 $\times 10^{-77}$ cm⁶ s²), which is comparable to that of an organometallic dendrimer ($\sigma_3 = 1.5 \times 10^{-77}$ cm⁶ s²) measured by Samoc et al. in very recent paper.⁴²

For comparative reasons, we have again used a perturbative tensor-based approach (the T-tensor method^{19,43}) to compute σ_3 . $\sigma_3(\omega)$, when averaged over molecular orientations assuming an isotropic sample, can be written as (assuming linearly polarized light)

$$\sigma_{3}(\omega) = \frac{4\pi^{3}(\hbar\omega)^{3}L^{6}}{3n^{3}c^{3}\hbar\cdot35} \sum_{f} \left| 2\sum_{ijk} T_{g\to f}^{ijk} T_{g\to f}^{ijk} + 3\sum_{ijk} T_{g\to f}^{iij} T_{g\to f}^{kkj *} \right| \left\{ \frac{\Gamma}{(E_{gf} - 3\hbar\omega)^{2} + \Gamma^{2}} \right\} (17)$$

where *c* is the speed of light in vacuum, *L* denotes a local-field correction, and *n* the refractive index of the medium (both set to 1 for vacuum). $T_{g^{-f}}$ corresponds to the three-photon transition amplitude from the ground state to a final three-photon state $|f\rangle$, with tensor *ijk* component defined as

$$T_{g \to f}^{ijk} = \sum P_{ijk} \sum_{m,n} \frac{\langle g | \mu_i | m \rangle \langle m | \mu_j | n \rangle \langle n | \mu_k | f \rangle}{(E_{gm} - \hbar \omega - i\Gamma)(E_{gn} - 2\hbar \omega - i\Gamma)}$$
(18)

where P_{ijk} denotes a complete permutation of the indices *i*, *j*, and *k*, obtaining trends that are again consistent with the results of the CV method. Thus, we have been able to analyze the dominant channels contributing to $|T_{g\rightarrow f}|^2 (E_{gf})^3 \Gamma / \{(E_{gf} - 3\hbar\omega)^2 + \Gamma^2\}$ for 3PA into the high-energy main peak and the low-energy peak, in analogy to what is discussed above for 2PA. Here, the involved channels for 3PA into a particular final state $|f\rangle$ involve two intermediate states, and the magnitude of a certain channel is again determined by transition dipoles and

detuning energies between the various states. Information on the mathematical details of few-state models for 3PA can for example be found in refs 19b,44.

The most relevant channels for 3PA into the B_{x1} and B_{x2} states can be found in Tables S10 and S11 in the Supporting Information. Here we have classified the channels depending on whether the first (one-photon allowed) intermediate state is the Q_x , the B_{x1} , or the B_{x2} state; the second intermediate state is then one of the 2PA active states discussed above. In general, we find that B-channel contributions strongly dominate over Q-channel contributions. As far as the former are concerned, the contributions of B_{x1} related channels, in the calculations, are typically larger than those involving Bx_2 states due to the larger calculated transition dipole moment between the ground state and B_{x1} .

IV. Conclusions

To summarize, we have successfully implemented the correction vector method within MRDCI/ INDO to study the structure—properties relationships for 2PA and 3PA of covalently linked porphyrin dimers. The ground-state-based CV method is found to be fully consistent with approaches like the S-tensor approach for 2PA and the T-tensor approach for 3PA (or the SOS method) but avoids the difficulty to resolve excited states.

The calculated spectra and trends are in good agreement with experimental observations. In particular, we also find an increase of the 2PA cross section by about 2 orders of magnitude when going from the monomer yPy to the corresponding dimer yPyyPy. Also most experimental trends for dimers with different linking groups are well reproduced. The observed trends are analyzed on the basis of few-state models, where it turns out that including only the Q_x state as an intermediate state (as done previously) is not sufficient. While the increase in the 2PA cross section when going from the monomer to the yPyyPy dimer can be clearly explained by the increase of μ_{ge} and much more importantly μ_{ef} and the decrease of the detuning energies ($E_{ge} - E_{ef}/2$), the observed evolution among the various dimers depends on a subtle interplay between various transition dipoles and detuning energies.

For 3PA, where the active states are in principle the same as for linear absorption, the cross section into the Q_x -band remains negligibly small. For the dimers, a now more than 3 orders of magnitude increase in the cross section is obtained for the B_{x1} band compared to the B-band of the monomer, while the cross section into B_{x2} is even another order of magnitude larger.

Acknowledgment. This work is supported by NSFC (grant nos. 10425420, 20433070, 20421101, 90503013) as well as the super computer center of the Chinese Academy of Sciences.

Supporting Information Available: Frontier Kohn–Sham orbitals of yPy monomer from the first-principles DFT calculations; quantum-chemical calculations (choice of the CI-active space and the reference determinants in the INDO/MRDCI procedure); transition energy and transition dipole moment in the *x*,*y* direction for Q- and B-band of yPy, $Zn_1(T)_2$ and $Zn_1(TT)_2$ compounds; dominant channels that contribute to 3PA into the high-energy main peak and the low-energy peak. This material is available free of charge via the Internet at http:// pubs.acs.org.

References and Notes

(1) (a) He, G. S.; Xu, G. C.; Prasad, P. N.; Reinhardt, B. A.; Bhatt, J. C.; McKellar, R.; Dillard, A. G. *Opt. Lett.* **1995**, *20*, 435. (b) Ehrlich, J. E.;

Wu, X. L.; Lee, I.-Y. S.; Hu, Z.-Y.; Rochel, H.; Marder, S. R.; Perry, J. W. Opt. Lett. 1997, 22, 1843.

(2) (a) Maruo, S.; Nakamura, O.; Kawata, S. *Opt. Lett.* **1997**, *22*, 132.
(b) Cumpston, B. H.; Ananthavel, S. P.; Barlow, S.; Dyer, D. L.; Ehrlich, J. E.; Erskine, L. L.; Heikal, A. A.; Kuebler, S. M.; Lee, I.-Y. S.; McCord-Maughon, D.; Qin, J.; Röckel, H.; Rumi, M.; Wu, X.-L.; Marder, S. R.; Perry, J. W. *Nature* **1999**, *398*, 51. (c) Kawata, S.; Sun, H.-B; Tanaka, T.; Takada, K. *Nature* (*London*) **2001**, *412*, 697. (d) Zhou, W. H.; Kuebler, S. M.; Braun, K. L.; Yu, T. Y.; Cammack, J. K.; Ober, C. K.; Perry, J. W.; Marder, S. R. *Science* **2002**, *296*, 1106.

(3) (a) Parthenopoulos, D. A.; Rentzepis, P. M. Science **1989**, 245, 843. (b) Strickler, J. H.; Webb, W. W. Opt. Lett. **1991**, 16, 1780. (c) Dvornikov, A. S.; Rentzepis, P. M. Opt. Commun. **1995**, 119, 341. (d) Belfield, K. D.; Schafer, K. J. Chem. Mater. **2002**, 14, 3656.

(4) Ogawa, K.; Ohashi, A.; Kobuke, Y.; Kamada, K.; Ohta, K. J. Am. Chem. Soc. 2003, 125, 13356.

(5) Kim, D. Y.; Ahn, T. K.; Kwon, J. H.; Kim, D.; Ikeue, T.; Aratani, A.; Osuka, A.; Shigeiwa, M.; Maeda, S. J. Phys. Chem. A 2005, 109, 2996.

(6) Inokuma, Y.; Ono, N.; Uno, H.; Kim, D. Y.; Nob, S. B.; Kim, D.; Osuka, A. Chem. Commun. 2005, 3702.

(7) Collini, E.; Ferrante, C.; Bozio, R. J. Phys. Chem. B 2005, 109, 2.
(8) Ahn, T. K.; Kim, K. S.; Kim, D. Y.; Noh, S. B.; Aratani, N.; Ikeda,

C.; Osuka, A.; Kim, D. J. Am. Chem. Soc. 2006, 128, 1700.
 (9) Drobizhev, M.; Meng, F.; Rebane, A.; Stepanenko, Y.; Nickel, E.;

(9) Diobilev, M., Meig, F., Rebaie, A., Stepanenko, F., Necki, E., Spangler, C. W. J. Phys. Chem. B **2006**, 110, 9802.

(10) Drobizhev, M.; Stepanenko, Y.; Rebane, A.; Wilson, C. J.; Screen, T. E. O.; Anderson, H. L. J. Am. Chem. Soc. **2006**, *128*, 12432.

(11) Humphrey, J. L.; Kuciauskas, D. J. Am. Chem. Soc. 2006, 128, 3902.

(12) Misra, R.; Kumar, R.; Chandrashekar, T. K.; Nag, A.; Goswami,D. Org. Lett. 2006, 8, 629.

(13) (a) Bonnett, R. *Chem. Soc. Rev.* **1995**, *24*, 19. (b) Prasad, P. N. *Introduction to Biophotonics*; Wiley-Interscience: Hoboken, NJ, 2003; Chapter 12.

(14) Remn, A.; Wild, U. P.; Rebane, A. J. Phys. Chem. A 2002, 106, 3045.

(15) (a) Drobizhev, M.; Stepanenko, Y.; Dzenis, Y.; Karotki, A.; Rebane, A : Taylor, P. N.: Anderson, H. L. J. Am. Cham. Soc. 2004, 126, 15252

A.; Taylor, P. N.; Anderson, H. L. J. Am. Chem. Soc. 2004, 126, 15352.
(b) Drobizhev, M.; Stepanenko, Y.; Dzenis, Y.; Karotki, A.; Rebane, A.;

Taylor, P. N.; Anderson, H. L. J. Phys. Chem. B 2005, 109, 7223. (16) (a) Orr, B. J.; Ward, J. F. Mol. Phys. 1971, 20, 513. (b) Pati, S. K.;

Marks, T. J.; Rater, M. A. J. Am. Chem. Soc. 2001, 123, 7287.

(17) (a) Olsen, J.; Jørgensen, P. J. Chem. Phys. 1985, 82, 3235. (b) Koch,
H.; Jørgensen, P. J. Chem. Phys. 1990, 93, 3333. (c) Helgaker, T.; Jensen,
H. J. Aa.; Jørgensen, P.; Olsen, J.; Ruud, K.; Ågren, H.; Auer, A. A.; Bak,
K. L.; Bakken, V.; Christiansen, O.; Coriani, S.; Dahle, P.; Dalskov, E. K.;
Enevoldsen, T.; Fernandez, B.; Hättig, C.; Hald, K.; Halkier, A.; Heiberg,
H.; Hettema, H.; Jonsson, D.; Kirpekar, S.; Kobayashi, R.; Koch, H.;
Mikkelsen, K. V.; Norman, P.; Packer, M. J.; Pedersen, T. B.; Ruden, T.
A.; Sanchez, A.; Saue, T.; Sauer, S. P. A.; Schimmelpfenning, B.; SylvesterHvid, K. O.; Taylor, P. R.; Vahtras, O. DALTON, an ab initio electronic structure program, release 1.2; 2001; available from http://www.kjemi.uio.on/software/dalton/dalton.html. (d) Christiansen, O.; Jørgensen, P.; Hättig,
C. Int. J. Quantum Chem. 1998, 68, 1. (e) Christiansen, O.; Gauss, J.;
Stanton, J. F. Chem. Phys. Lett. 1998, 292, 437. (f) Gauss, J.; Christiansen, O.;
Gauss, J.; Stanton, J. F. Chem. Phys. Lett. 1998, 296, 117. (g) Christiansen, O.;

(18) Soos, Z. G.; Ramasesha, S. J. Chem. Phys. 1989, 90, 1067.

(19) (a) Cronstrand, P.; Luo, Y.; Norman, P.; Ågren, H. *Chem. Phys. Lett.* **2003**, *375*, 233. (b) Cronstrand, P.; Luo, Y.; Ågren, H. J. Chem. Phys. **2004**, *121*, 2020.

(20) (a) Day, P. N.; Nguyen, K. A.; Pachter, R. J. Phys. Chem. B 2005, 109, 1803.
 (b) Day, P. N.; Nguyen, K. A.; Pachter, J. Chem. Phys. 2006, 125, 094103.

(21) (a) Masunov, A.; Tretiak, S. J. Phys. Chem. B **2004**, 108, 899. (b) Badaeva, E. A.; Timofeeva, T. V.; Masunov, A.; Tretiak, S. J. Phys. Chem. A **2005**, 109, 7276.

(22) Dreuw, A.; Head-Gordon, M. Chem. Rev. 2005, 105, 4009.

(23) (a) Ramasesha, S.; Soos, Z. G. Chem. Phys. Lett. 1988, 153, 171.
(b) Ramasesha, S.; Shuai, Z.; Brédas, J. L. Chem. Phys. Lett. 1995, 245, 224.
(c) Shuai, Z.; Ramasesha, S.; Brédas, J. L. Chem. Phys. Lett. 1996, 250, 14.

(24) Yi, Y. P; Zhu, L. Y.; Shuai, Z. G. J. Chem. Phys. 2006, 125, 164505.
 (25) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb,
 M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K.

N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.;

Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. *Gaussian 03*, Gaussian, Inc.: Pittsburgh, PA, 2003.

(26) Buenker, R. J.; Peyerimhoff, S. D. Theor. Chim. Acta 1974, 35, 33.

(27) (a) Pople, J. A.; Beveridge, D. L.; Dobosh, P. A. J. Chem. Phys. **1967**, 47, 2026. (b) Ridley, J.; Zerner, M. Theor. Chim. Acta **1973**, 32, 111.

(28) Mataga, N.; Nishimoto, K. Z. Phys. Chem. (Munich) 1957, 13, 140.
(29) Liu, X. J.; Feng, J. K.; Ren, A. M.; Cheng, H.; Zhou, X. J. Chem. Phys. 2004, 120, 11493.

(30) Zojer, E.; Beljonne, D.; Kogej, T.; Vogel, H.; Marder, S. R.; Perry, J. L.; Brédas, J. L. J. Chem. Phys. **2002**, 116, 3646.

(31) (a) Rubtsov, I. V.; Susumu, K.; Rubstov, G. I.; Therien, M. J. J. Am. Chem. Soc. **2003**, *125*, 2687. (b) Kumble, R.; Palese, S.; Lin, V. S.-

Y.; Therien, M. J.; Hochstrasser, R. M. J. Am. Chem. Soc. 1998, 120, 11489.
 (32) Muranaka, A.; Asano, Y.; Tsuda, A.; Osuka, A.; Kobayashi, N.
 Chem. Phys. Chem. 2006, 7, 1235.

(33) (a) Taylor, P. N.; Huuskonen, J.; Rumbles, G.; Aplin, R. T.;
Williams, R.; Anderson, H. L. *Chem. Commun.* 1998, 909. (b) Aenold, D.
P.; James, D. A.; Kennard, C. H. L.; Smith, G. J. Chem. Soc., Chem. Commun. 1994, 2131.

(34) Chung, S.; Zheng, S.; Odani, T.; Beverina, L.; Fu, J.; Padilha, L. A.; Biesso, A.; Hales, J. M.; Zhan, X. W.; Schmidt, K.; Ye, A. J.; Zojer, E.; Barlow, S.; Hagan, D. J.; Van Stryland, E. W.; Yi, Y. P.; Shuai, Z. G.; Pagani, G. A.; Brédas, J. L.; Perry, J. W.; Marder, S. R. *J. Am. Chem. Soc.* **2006**, *128*, 14444.

(35) Beljonne, D.; O'Keefe, G. E.; Hamer, P. J.; Friend, R. H.; Anderson, H. L.; Brédas, J. L. J. Chem. Phys. **1997**, 106, 9439.

(36) For the latter two molecules, the actual maxima of the features are not well resolved in the experiments, but photon/state energies for the highest energy data points imply that one is at least very close to the maxima of the calculations.

(37) We had done a test for PyyP dimer by rotating the two porphyrin rings to about 40° . DFT based single-point energy calculations show that the energy barrier between the twisted and the planar PyyP dimer is 3.69 kcal/mol. At the same time, the calculated 2PA cross section peak value of the twisted PyyP dimer is significantly reduced from 19195 GM to 4536 GM.

(38) (a) Rumi, M.; Ehrlich, J. E.; Heikal, A. A.; Perry, J. W.; Barlow, S.; Hu, Z.; McCord-Maughon, D.; Parker, T. C.; Röckel, H.; Thayumanavan, S.; Marder, S. R.; Beljonne, D.; Brédas, J. L. J. Am. Chem. Soc. 2000, 122, 9500. (b) Dirk, C. W.; Cheng, L. T.; Kuzyk, M. G. Int. J. Quantum Chem. 1992, 43, 27. (c) Mazumdar, S.; Duo, D.; Dixit, S. N. Synth. Met. 1993, 57, 3881. (d) Albota, M.; Beljonne, D.; Brédas, J. L.; Ehrlich, J. E.; Fu, J.-Y.; Heikal, A. A; Hess, S. E.; Kogej, T.; Levin, M. D.; Marder, S. R.; McCord-Maughon, D.; Perry, J. W.; Röckel, H.; Rumi, M.; Subramaniam, G.; Webb, W. W.; Wu, X.-L.; Xu, C. Science 1998, 281, 1653. (e) Cronstrand, P.; Luo, Y.; Agren, H. Chem. Phys. Lett. 2002, 352, 262. (f) Zojer, E.; Beljonne, D.; Pacher, P.; Brédas, J. L. Chem. –Eur. J. 2004, 10, 2668. (h) Blanchard-Desce, M.; Barzoukas, M. J. Opt. Soc. Am. B 1998, 15, 302.

(39) Luo. Y.; Norman, P.; Macak, P.; Agren, H. J. Phys. Chem. A 2000, 104, 4718.

(40) Anderson, R. J.; Holtom, G. R.; McClain, W. M. J. Chem. Phys. 1979, 70, 4310.

(41) Zojer, E.; Wenseleers, W.; Pacher, P.; Barlow, S.; Halik, M.; Grasso, C.; Perry, J. W.; Marder, S. R.; Brédas, J.-L. *J. Phys. Chem. B* **2004**, *108*, 8641.

(42) Samoc, M.; Morrall, J. P.; Dalton, G. T.; Cifuentes, M. P.; Humphrey, M. G. Angew. Chem., Int. Ed. 2007, 46, 731.

(43) Zhu, L.; Yang, X.; Yi, Y.; Xuan, P.; Shuai, Z.; Chen, D.; Zojer, E.; Brédas, J. L.; Beljonne, D. J. Chem. Phys. 2004, 121, 11060.

(44) Zhu, L.; Yi, Y.; Shuai, Z.; Brédas, J. L.; Beljonne, D.; Zojer, E. J. Chem. Phys. 2006, 125, 044101.