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Duschinsky rotation effect is a simple and effective way to characterize the difference between the
ground state and excited state potential energy surfaces. For complex molecules, harmonic oscillator
model is still the practical way to describe the dynamics of excited states. Based on the first-order
perturbation theory à la Fermi golden rule, the authors have applied the path integral of Gaussian
type for the correlation function to derive an analytic formalism to calculate the internal conversion
rate process with Duschinsky rotation effect being taken into account. The validity of their
formalism is verified through comparison with previous work, both analytically for the case of
neglecting Duschinsky rotation and numerically for the ethylene molecules with two-mode mixing.
Their expression is derived for multimode mixing. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2710274�

I. INTRODUCTION

Understanding the excited state nonradiative decay pro-
cess is important for designing light-emitting molecules: the
light-emitting efficiency is determined by the competition
between radiative decay and the nonradiative decay.1 This is
of both fundamental and application interests. The molecular
materials are usually in solid thin film form in the operating
devices. In general, the luminescent efficiency in solid state
is much reduced in comparison with thein solution, because
the molecular aggregation usually quenches luminescence,
either by Davydov splitting or intermolecular charge transfer.
This is bad for light-emitting devices. In recent years, com-
pounds such as silole derivatives,2 cis,cis-1,2,3,4-tetra-
phenylbutasiene,3 triarylethene-based � systems,4 etc.,
present extremely high luminescent efficiency in solid states
as well as in other aggregate states, which present almost no
luminescence in solution. This exotic photophysical behavior
is termed as aggregation-induced emission �AIE�.2 Our pre-
vious studies indicated that the AIE phenomena are due to
the reduction of nonradiative decay rate when going from
solution phase to solid state, because the restriction of the
side-phenyl ring twisting motion can greatly suppress the
internal conversion �IC� process from the excited to ground
state.5,6 We found that the low-frequency modes �less than
100 cm−1� are extremely important for the IC process for the
silole molecules in dissipating the excited state energy

through ring twisting. A deeper understanding of AIE phe-
nomena would be certainly helpful in designing highly lumi-
nescent organic materials.

Lin and Bersohn have proposed the formalism of inter-
conversion between electronic and vibrational energies,7

which results in a general theory of internal conversion.7–14 It
has been widely applied to diatomic molecules at the ab
initio quantum chemistry level.15,16 Both displaced harmonic
oscillators and Duschinsky rotation effect �DRE� between
two electronic states have been considered for small poly-
atomic molecules.17,18 We note that in the AIE system, the
low-frequency modes are found to play a critical role. In
general, the low-frequency motions exhibit strong mode
mixing effects. In DRE, it is assumed that both ground state
and excited state potential energy surfaces can be described
by different harmonic parabolas, where the normal modes of
one electronic state can be expressed as a linear combination
of all the normal modes of another parabola, namely, mode
mixing. Thus, it is an effective way to take the difference
between the potential energy surfaces for different electronic
states. It is the primary interest of this work to develop a
general analytical formalism for the internal conversion rate
considering the DRE with any numbers of mode mixing.

We note that DRE has been investigated for the absorp-
tion and emission processes by many authors.19 Recently,
Ianconescu and Pollak20 have investigated the photoexcita-
tion cooling effects by developing a general Franck-Condon
factor formula with DRE in the vibration correlation function
path integral formalism. In the present work, based on the
Fermi golden rule and the path integral formulation for the
vibration correlation function, we derived a rate formula fora�Electronic mail: zgshuai@iccas.ac.cn
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the nonradiative process from the excited state to the ground
state through vibronic coupling by considering DRE with
any numbers of mode mixing. We will show both analyti-
cally and numerically that our compact formula can repro-
duce the previous results.

This paper is organized as follows. In Sec. II, we de-
scribe the derivation of our formalism for the rate of the
nonradiative transition from the excited to ground state. And
we will show that the new formalism in matrix production
form can be reduced to the same formalism in literature
when DRE is neglected. When DRE is considered, we will
show in Sec. III that the numerical results on the internal
conversion rate for ethylene molecule when only two-mode
mixing is considered agree well with the previous results of
Mebel et al.18 Finally, in Sec. IV we summarize our results
and discuss characteristic features of our new formula.

II. FORMALISM

A. The general expression of internal conversion rate
constant

Based on time-dependent perturbation method and using
Born-Openheimer �BO� adiabatic approximation, and fol-
lowing Lin et al.,21 the rate constant of nonradiative transi-
tion is given by

Wi→f =
2�

�
�

�
�
��

Pi��Hf��,i�
� + �

n�

Hf��,n�
� Hn�,i��

Ei� − En�
�2

���Ef�� − Ei�� , �1�

where the nonradiative transition process is from an initial
�excited� vibronic state �i�� to the final �ground� state �f���
and Pi� denotes the Boltzmann distribution function of the
initial vibronic manifold.

Considering the first-order perturbation, for the internal
conversion transition process, Eq. �1� can be written as

Wi→f =
2�

�
�

�
�
��

Pi��	� f� f���HBO� ��i�i���2��Ef�� − Ei�� .

�2�

Here ��i� and �� f� are the initial and final electronic states,
respectively;��i�� and �� f��� designate the vibrational states
of the system and are expressed as the product of the wave
functions of each normal mode: ��i��=
 j�	i�j

�, �� f���
=
 j�	 f�j�

�; HBO� represents the Born-Oppenheimer coupling

due to the breakdown of the adiabatic approximation which
can be expressed as the following first-order term:

HBO� �
i�� = − �2�
l
� ��i

�Ql
�� ��i�

�Ql
� , �3�

where Q is the vibration normal mode coordinate.
Substituting Eq. �3� into Eq. �2�, applying Condon ap-

proximation, and for simplicity assuming only one “promot-
ing mode,” the rate constant of internal conversion transition
becomes

Wi→f =
2�

�2 �Rl�fi��2�
�

�
��

Pi���� f��� ��i�

�Ql
���2

���Ef�� − Ei�� , �4�

where

Rl�fi� = − �2	� f�
�

�Ql
��i� �5�

represents the coupling between the electronic wave func-
tions of two states. The above expressions have been given
in Refs. 18 and 21.

B. Construction of the thermal cross-correlation
function

The nuclear vibration motion Hamiltonians of the elec-
tronic ground and excited states are assumed to be harmonic.
Thus, the ground state Hamiltonian is a collection of N nor-
mal modes,

Hg = 1
2�

i=1

N

�Pgi

2 + �gi

2 Qgi

2 � , �6�

where Qgi
and Pgi

are the ith mass-weighted normal mode
coordinate and momentum, respectively. The excited state
Hamiltonian is also composed of N normal modes, but with
different coordinates, momentum, and frequencies, i.e.,

He = 1
2�

i=1

N

�Pei

2 + �ei

2 Qei

2 � . �7�
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The excited state coordinates Qei
are assumed to be linear

combinations of the ground state coordinates Qgj
, in addition

to a rigid displacement, that is,

Qei
= �

j

SijQgj
+ Di, �8�

where S is the Duschinsky22 orthogonal rotation matrix and
D represents the displacement vector between the minima of
the excited state and ground state parabolas. A model for the
displaced and rotational surface is presented in Fig. 1. � rep-
resents that there is Duschinsky rotation between the ground
and excited state potential energy surfaces in Fig. 1.

Equation �4� can be expressed for multimode case as

Wi→f =
2�

�2 �Rl�fi��2�
�

�
��

Pi��		 f�j�
�

�

�Ql
�	i�l

��2

�

j

��		 f�j�
�	i�j

��2��Ef�� − Ei�� , �9�

where j indicates any mode except lth. The Boltzmann dis-
tribution function for the initial state is

Pi�k
=

e−El�k

Zik
, �10�

where Zik=��k=0
� e−Ei�k is the partition function for the kth

mode in the initial electronic manifold.
The delta function can be expressed as a Fourier trans-

formation

��Ef�� − Ei�� =
�

2�


−�

�

d�e−i�Ef��−Ei���, �11�

where �= t /�.
The nuclear momentum is

Pl = − i�
�

�Ql
. �12�

Then, Eq. �9� can be expressed as

Wi→f =
1

�
�Rl�fi��2

1



k

Zk


−�

�

d�
1

�2eiEif��i��,��a��,� ,

�13�

where

�l��,� = �
�l

�
�l�

e−Ei�l�		 f�l�
�Pl�	i�l

��2ei��Ei�l
−Ef�l�

�, �14�

�a��,� = 

j�l

�
�j

�
�j�

e−Ei� j�		 f�j�
�	i�j

��2ei��Ei� j
−Ef� j�

�. �15�

Inserting complete sets in the summation, we have

�l��,� = �
�l

�
�l�

e−Ei� j�		 f�l�
�Pl�	i�l

��2ei��Ei�l
−Ef�l�

�

= �
�l

�
�l�

e−Ei�l		i�l
�Ple

i�Ei�l�	 f�l�
�

�		 f�l�
�Ple

−i�Hj��	i�l
�

= �
�l

		i�l
�Ple

−�−i��Hi�Ple
−i�Hf��	i�l

�

= Tr�Ple
−i�Hj�Ple

−�−i��Hl��

� Tr�Ple
−i�gHg�Ple

−i�eHe�� , �16�

where Hi
l= 1

2 �Pil
2 +�il

2Qil
2�, Hf

l = 1
2 �Pfl

2 +� f l

2 Qfl

2 �, and �g=� ,�e

= / i−�.
Similarly, the nuclear wave functions and the harmonic

oscillator Hamiltonians excluding the promoting mode are
denoted as

�i�j

a = 

j��l�

	i�j
,

� f�j

a = 

j��l�

	 f�j�
,

Hi
a = 1

2 �
j��l�

�Pij

2 + �ij

2Qij

2� ,

Hf
a = 1

2 �
j��l�

�Pf j

2 + � f j

2 Qf j

2 � .

Then the nuclear motion correlation function is

�a��,� = �
�j

�
�j�

e−Ei� j�	� f�j�
a ��i�j

a ��2ei��Ei� j
−Ef� j

�

= �
�j

	�i�j

a �e�i�−�Hi
a
e−i�Hf

a
��l�j

a �

� Tr�e−i�gHg
a
e−i�eHe

a
� . �17�

This is precisely the Franck-Condon factor with Duschinsky
rotation for the absorption and emission processes, which
have been investigated by many authors.19 Equation �17� is
the same correlation expression as in Ref. 20 by Ianconescu
and Pollak. The advantages of the correlation function ex-
pression are �i� that any number of mode mixing is consid-

FIG. 1. Scheme of the displaced and rotational potential energy surfaces of
the Duschinsky rotation effect for nonradiative decay process.
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ered and �ii� that both Eqs. �16� and �17� are mathematically
compact and can be solved easily by the path integral for-
malism. For specific number of mode mixings, these are
fully equivalent to the previous expressions.18,19 It should
also be pointed out that the Hamiltonian in Eqs. �16� and
�17� are not necessarily for harmonic oscillators. The corre-
lation function expressions are general.

C. Analytic solution

Define

�l��g,�e� = Tr�Ple
−i�gHg

l
Ple

−i�eHe
l
� . �18�

Tracing over the excited-electronic-state coordinates, we
have

�l��g,�e� = 
−�

�

dx��	x���Ple
−i�gHg

l
Ple

−i�eHe
l
�x��� , �19�

where the vector x�� represents the excited-electronic �initial�-
state normal mode coordinates Qei

. By inserting three com-
plete sets of ground state coordinates y� , z�, and w� , and two
complete sets of excited state coordinates x�� and y��, Eq. �18�
can be recast as

�l��g,�e� = 
−�

�

dxdydzdwdx�dy�	x��x�	x�Pl�y�	y�e−i�gHg
l
�z�

�	z�Pl�w�	w�y��	y��e−i�eHc
l
�x�� . �20�

The matrix element for the nuclear momentum is

	x�P�y� = − i�
�

�x
��x − y� . �21�

The off-diagonal matrix element for harmonic Hamiltonian
�Gaussian type23� is

	x�e−i�H�y� =� a���
2�i�

�exp� i

�
�1

2
b����x2 + y2� − a���xy�� , �22�

where ag�e�i��g�e�i�=�i / sin���i�g�e�� and bg�e�i��g�e�i�
=�i / tan���i�g�e��. Here, the subscripts g and e are the
ground and excited state potential energy surfaces, respec-
tively, and �i is the frequency of the ith normal mode in the
specific manifold. The inner product between the ground and
excited state coordinates is given by

	x���x�� = ��x�� − �Sx� + D� �� . �23�

Inserting Eqs. �21�–�23� into Eq. �20�, we have

�l��g,�e� = − �2�agl��g�
2�i�

�ael��e�
2�i�


−�

�

dxdydzdwdx�dy�
�

�x
��x − y�exp� i

�
�1

2
bgl��g��y2 + z2� − agl��g�yz��

�
�

�z
��z − w���w − y��exp� i

�
�1

2
bel��e��x�2 + y�2� − ael��e�x�y�����x� − x� . �24�

The � functions and their first-order derivatives can be inte-
grated first, leaving only twofold integrations, instead of six
fold,

�l��g,�e� = − �2�agl��g�
2�i�

�ael��e�
2�i�

�
−�

�

dxldylSll�bgxl − agyl��beyl� − aexl��

� exp� i

�
�1

2
bg�xl

2 + yl
2� − agxlyl��

�exp� i

�
�1

2
be�xl�

2 + yl�
2� − aexl�yl��� . �25�

For the Hamiltonian of a collection of N independent modes,
the off-diagonal matrix element can be obtained based on Eq.
�22�,

	x� �e−i�H�y�� =� det�a�
�2�i��N

�exp� i

�
�1

2
�x�Tbx� + y�

Tby�� − x�Tay��� , �26�

where a and b are diagonal matrices with elements

ai��� = �i/sin���i�� , �27a�

bi��� = �i/tan���i�� . �27b�

Similarly, the correlation function �a��g ,�e�
=Tr�e−i�gHg

a
e−i�eHe

a
� can be evaluated through Eqs. �23� and

�26�. In fact, this is precisely the Franck-Condon overlap
factor for the radiative decay process.

Therefore, the product of the correlation functions may
be integrated over x and y and expressed as
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�tot��g,�e� = �l��g,�e��a��g,�e� =�det�ag�det�ae�
�2�i��2N 

−�

�

dxidyiSll�bgxl − agyl��beyl� − aexl��

�exp� i

�
�1

2
bg�xl

2 + yl
2� − agxlyl��exp� i

�
�1

2
be�xl�

2 + yl�
2� − aexl�yl���

� 
−�

�

dx1 ¯ dxN dy2 ¯ dyN exp� i

�
�1

2
�x�Tbgx� + y�

Tbgy�� − x�Tagy���
�exp� i

�
�1

2
�x��Tbex�� + y��

Tbey��� − x��Taey���� �xN � xl,yN � yl� , �28�

where the lth normal mode is assumed as the promoting mode; ag, bg, and ae, be are defined as in Eq. �27� for the ground and
excited states, respectively; x�� and y�� represent �Sx+D� and �Sy+D�, respectively, according to Eq. �23�.

In order to simplify the above formula, we further define the following matrices:

A��g,�e� = ag��g� + STae��e�S ,

B��g,�e� = bg��g� + STbe��e�S ,

E��e� = be��e� − ae��e� ,

G��g� = bg��g� − ag��g� .

And Eq. �28� can be recast into a matrix product form

�tot��g,�e� =�det�ag�det�ae�
�2�i��2N 

−�

+�

dx�dy�Sll�bglxl − aglẏl��belSl
Ty� − aelSl

Tx� + �bel − ael�Dl�

�exp� i

�
�1

2
�x�TBx� + y�

TBy�� − x�TAy� + D� TES�x� + y�� + D� TED� �� , �29�

where Sl
T denotes the lth row of the S matrix, a vector now.

This is a typical Gaussian integration problem with linear and quadratic prefactors. It can be solved through the first and
second order derivatives of the Gaussian integral. We define a new argument z= �x ,y� as well as several new auxiliary vectors
and matrices with doubled dimensionality �2N�2N�,

H� =�
0

·

·

·

bglbelDl − bglaelDl

0

·

0

aglaelDl − aglbelDl

0

·

·

·

�
2N

, G� =

⎝
⎜
⎜
⎜
⎛

0 0

· ·

· ·

· ·

− aelbglSl
T bglbelSl

T

0 0

· ·

· ·

· ·

0 0

· ·

· ·

· ·

aglaelSl
T − aglbelSl

T

0 0

· ·

· ·

· ·
⎠
⎟
⎟
⎟
⎞

2N�2N

,
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K = � B − A

− A B
� ,

F = �DTES,DTES�2N, and z�T = �x�T,y�
T� .

Then, Eq. �29� is now recast into a simple form of

�tot��g,�e� =�det�ag�det�ae�
�2�i��2N 

−�

+�

dz�Sll�z�TGz� + H� Tz��

�exp� i

�
�1

2
z�TKz� + FTz� + D� TED� �� . �30�

Using the Guassian integration formula, it is straightforward
to obtain

�tot��g,�e� =�det�ag�det�ae�
det K

Sll�− i���Tr�GK−1���

+ HTK−1F − �K−1F�TG�K−1F��

�exp� i

�
�−

1

2
FTK−1F + D� TED� �� . �31�

Finally, the nonradiative transition rate is obtained as

Wi→f =
1

�
�Rl�fi��2

1



k

Zik


−�

�

d�e−i�E� 1

�2�tot��,� . �32�

Equations �31� and �32� are compact but complicated. To
verify the validity of the above formalism, we took the sim-
plest case, namely, when DRE is neglected, where the ana-
lytical expression can be found in Ref. 21. Under the same
approximation, namely, �i� neglecting the Duschinsky rota-
tion, Sij =�ij, �ii� assuming zero displacement for the promot-
ing mode, Dl=0, and �iii� at low temperature ��l /kT�1, the
correlation function part of Eq. �32� is found to be

�tot�t,� =
��l

2
exp�i�lt − �

j

HRj��2n̄j + 1� − n̄je
it�i

− �n̄j + 1�e−it�j�� . �33�

Here, the HRj denotes the Huang-Rhys factor for the jth
mode HRj =Dj

2� j /2�, and the thermally averaged number of
phonons for the jth mode is n̄j = �e��j−1�−1. Therefore, the
rate constant for the internal conversion transition is recast
into

Wi→f =
1

�2� �l

2�
�Rl�fi��2�

−�

�

dt exp�i�� fit + �it�

− �
j

HRj��2n̄j + 1� − n̄je
−it�j − �n̄j + 1�eit�j�� ,

�34�

which is exactly the same as in Ref. 21. Thus, for the sim-
plest case, our formalism is proved to be correct. It is very
difficult to verify analytically our formalism when DRE is
considered due to the complexity of algebra. However, this
can be done numerically to compare with previous results, as

will be shown in Sec. III. Before that, we will describe the
implementation of the electronic coupling prefactor.

D. Electronic coupling term

So far, by employing the path integral formalism, we
have derived the analytical solution for the nuclear part of
the internal conversion rate. The electronic coupling prefac-
tor involves the transition between initial and final states of
the momentum of nuclear motion. Based on the lowest order
perturbation theory, Rl�fi� is determined by the vibronic cou-
pling and is given by17

	� f�
�

�Qfl
��i� =

	� f
0��V/�Qfl��i

0�
E�� f

0� − E��i
0�

, �35�

where V denotes the Coulomb interaction potential between
the electrons and nucleus, and Qfl is the promoting mode
which couples the electronic states � f and �i.The derivative
with respect to the promoting mode is calculated at the equi-
librium geometry of the electronic ground state. The vibronic
coupling can be calculated as

	� f
0�

�V

�Qfl
��i

0� = �
�

atoms

Z�e2�
j

L�l
j W�

j �fi� , �36�

where j=x ,y ,z, and

L�l
j =

�R�
j

�Qfl
�37�

and

W�
j �fi� = 	� f

0� �
�

electrons
r�

j − R�
j

�r� − R��3
��i

0� . �38�

Here R�
j and r�

j are the Cartesian coordinates of the nucleus
� and the electron �, respectively, and ��

electrons�r�
j −R�

j � / �r��

−R� ��3 is the jth component of the electric field operator for
the nucleus �.

O� = �
�

electrons
r� − R�

�r� − R��3
. �39�

When expanded in the atomic orbital basis,

	��O���� = 	��
r − R�

�r − R��3
���

= 
−�

+�

���r − R��
r − R�

�r − R��3
���r − R��dr

= 
−�

+�

���r��
r� + R� − R�

�r � + R� − R��3

����r� + R� − R��dr�,

where �� and �� are atomic basis functions.
Since our ultimate purpose is for relatively large mol-

ecule, we then employ the zero differential overlap approxi-
mation to evaluate the integration,
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	��O���� = 
−�

+�

���r��
r� + R� − R�

�r� + R� − R��3
���r��dr�. �40�

For R� �=R� �, Eq. �40� can be simplified as

	��O���� = 
−�

+�

���r � �
r�

�r � �3
���r��dr�. �41�

For R��R�, we assume r��R�−R�. Then Eq. �40� be-
comes

	��O���� = � 1

�R� − R��2
+

− 2R�

�R� − R��3����

+
− 2

�R� − R��3−�

+�

���r��r����r��dr�. �42�

Equations �41� and �42� combined with Eqs. �35�–�38� are
the practical equations to evaluate the electronic coupling.
Namely, W�

j �fi� can be computed as the transition matrix
element over the one-electron electric field operator at the
atomic center �. Our implementation of the above coupling
term is carried out in the framework of semiempirical ZINDO

level24 with multireference determinant configuration inter-
action level for the electronic excited state.

III. RESULTS AND DISCUSSION FOR ETHYLENE
MOLECULE

We take ethylene molecule as an example to show how
our new formalism works. The internal conversion rate con-
stant of ethylene 1B1u→ 1Ag with DRE has been discussed
extensively by Mebel et al.,18 where IC formalisms for cases
with two-mode, three-mode, and four-mode mixings have
been derived, respectively. In this section, to further check
the validity of our new formalism, we take the case of two-
mode mixing �Q1 and Q4� and two different promoting
modes, Q5 and Q6, respectively, for comparison with Mebel
et al. We adopted the optimized geometries, frequencies, and
normal modes of the ground and first excited states,
Duschinsky rotation matrix, and electronic coupling constant
associated with the promoting mode given in Refs. 17 and
18.

The nuclear part time-dependent function F�t� of the in-
ternal conversion rate constant of the radiationless transition
�at T=273.25 K� is depicted in Fig. 2. The solid line repre-
sents the case without DRE, and the dashed line for the case
with DRE. As we can see the dashed curve decays more
rapidly to zero than the solid one, which suggests that the
Duschinsky rotation accelerates the decay process from the
first excited �S1� to ground electronic state �S0� in ethylene.
Figure 3 shows the calculated temperature dependence of the
internal conversion rate constants of the nonradiative transi-
tion S1→S0 of ethylene with and without the Duschinsky
rotation effect for promoting mode being Q5. In Fig. 4, we
depicted the internal conversion rates as function of tempera-
ture from 0 to 1500 K, for two cases: the fifth �Q5� and the
sixth �Q6� as promoting mode, respectively. The available
results from Mebel et al. �Fig. 8 of Ref. 18� are also dis-

played in the same figure. It is found that our results are in
full agreement with previous theoretical values.18 This fur-
ther rationalizes the validity of our formula.

Furthermore, we depicted in Fig. 3 the case with all the
modes mixing. This is straightforwardly done with our for-
malism. It should be noted that the Duschinsky rotation ma-
trix for the ethylene case from Ref. 18 is such that only
two-mode mixing is important. Thus, the final results for the
temperature dependence as well as the internal conversion
rate are close to the case of two-mode mixing. However, our
recent investigation on other molecular systems which show
interesting light-emitting behaviors does show a strong
Duschinsky mixing and it is imperative to include many-
mode mixings into consideration. In fact, we found that in
such cases, there is no way to select two or a few modes
mixing from a large Duschinsky matrix. Most importantly,
the correlation function formalism itself is nontrivial. It pro-
vides a facile framework for further developments, for in-
stance, one can do cumulant expansion to include the anhar-
monicity effects perturbatively based on our present
formalism, which is in progress in our group. Indeed, Wang
and Thoss showed that the correlation function formalism

FIG. 2. Time-dependent total correlation functions for the ethylene case.

FIG. 3. Temperature dependence of internal conversion rate constants of the
radiationless transition from the first excited to ground state in ethylene.
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when coupled with multilayer multiconfiguration can treat
quantum dynamics for complex molecules.25 Pollak and He26

employed the correlation function formalism for absorption
and emission and have found new effects such as excited
state cooling, even though the absorption and emission
theory was well documented.26 This indicates the robustness
of the correlation function formalism.

IV. CONCLUSION AND DISCUSSION

In this work, we have presented a new approach to de-
rive the nonradiative decay rate from the excited to the
ground state through vibronic coupling with the Duschinsky
effect. The validity of this formalism is verified through two
benchmark comparisons. Namely, in the case without DRE,
our formula can be shown analytically to be equivalent to the
previous analytical formula, and in the case of Duschinsky
rotation with two-mode mixing for the internal conversion
process from 1B1u→ 1Ag transition for ethylene, the numeri-
cal results from our formalism are also in agreement with
Mebel et al.18

In summary, by employing the path integral for the vi-
bration correlation function, in the framework of the nonra-
diative decay theory of Lin et al., we have derived an ana-
lytical expression which is valid for Duschinsky rotation
containing any number of modes mixing in one compact
form. Most importantly, the correlation function formalism
in the present work provides a facile framework for applica-
tion to large conjugated molecules, which will be addressed
in future work. The anharmonicity effects can be further for-
mulated in the present approach, which is in progress.
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