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Semiclassical Marcus electron transfer theory is often employed to investigate the charge transport
properties of organic semiconductors. However, quite often the electronic couplings vary several
orders of magnitude in organic crystals, which goes beyond the application scope of semiclassical
Marcus theory with the first-order perturbative nature. In this work, we employ a generalized
nonadiabatic transition state theory �GNTST� �Zhao et al., J. Phys. Chem. A 110, 8204 �2004��,
which can evaluate the charge transfer rates from weak to strong couplings, to study charge transport
properties in prototypical organic semiconductors: quaterthiophene and sexithiophene single
crystals. By comparing with GNTST results, we find that the semiclassical Marcus theory is valid
for the case of the coupling �10 meV for quaterthiophene and �5 meV for sexithiophene. It is
shown that the present approach can be applied to design organic semiconductors with general
electronic coupling terms. Taking oligothiophenes as examples, we find that our GNTST-calculated
hole mobility is about three times as large as that from the semiclassical Marcus theory. The
difference arises from the quantum nuclear tunneling and the nonperturbative effects.
© 2009 American Institute of Physics. �DOI: 10.1063/1.3055519�

I. INTRODUCTION

Charge transport in organic semiconductors has been a
subject of fundamental interest for decades,1 but the precise
nature of charge carrier transport has not been fully resolved
yet.2,3 The realizations of electronic and optoelectronic de-
vices trigger a renewed interest in better understanding the
intrinsic charge transport processes.4 Recently, new tech-
niques developed for preparing ultrapure single crystals of
these organic materials provide a useful tool to achieve this
goal. A number of experimental and theoretical studies have
shown that the mechanisms of charge transfer �CT� in or-
ganic conductive materials are subject to considerable uncer-
tainties and likely differ substantially for different
materials.5–9 Among these, thiophene-based materials are a
promising class of organic materials for their use in organic
thin film transistor.10 In order to estimate the full potentials
of these materials, a better understanding of the intrinsic
charge transport mechanism is needed.

It turns out that, at low temperatures, the charge trans-
port in a number of organic crystals can be described in a
bandlike regime.11 As the temperature increases, the dynamic
structure disorder may invalidate the band transport model.
This leads to a high temperature regime where the charge
carriers get localized over single molecule and transport be-
havior is governed by a thermally activated hopping

mechanism.2,6,12 Semiclassical Marcus hopping model13 for
self-exchange charge transfer processes has been widely em-
ployed, as follows:

kMarcus =
�t�2

�
� �

�kBT
exp�− �/4kBT� , �1�

where kB denotes the Boltzmann constant and T is the tem-
perature. Equation �1� indicates that the rate of CT depends
on two main parameters: the reorganization energy � and the
electronic coupling t. These molecular parameters greatly
help in designing organic semiconductors.5,14,15 At this stage,
however, it is worth stressing that this formula implies that
the system has to reach a transition state for the CT to occur.

Recently, several experiments performed on organic
single crystals have made clear that this model is inadequate.
For example, ultrapure single crystals of pentacene and ru-
brene show a “bandlike” mobility,8,16 but the analysis of ex-
perimental data indicates that a mean free path of the charge
carriers is close to the distance between molecules,17 a fact
that is in sharp contrast to a delocalized picture. To explain
this seeming contradiction, Troisi and Orlandi18,19 argued
that the thermal molecular motions in organic crystals may
cause large fluctuations in the intermolecular transfer inte-
grals, which can localize the charge carrier and reduce the
mobility. This description excluded the bandlike picture and
explained temperature dependence at the same time. Since
the conjugated CC stretching modes are �1500 cm−1, the
classical high temperature limit assumed in Eq. �1� is only
approximate and quantum motion of nucleus should be con-a�Electronic mail: zgshuai@tsinghua.edu.cn.
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sidered. Based on this point, the present authors have shown
that a full quantum mechanical Fermi golden rule �FGR�
treatment20 would largely lower the actual barrier from that
computed from � as described in Eq. �1�, which leads to a
bandlike mobility behavior for rubrene single crystals within
the hopping model.21

In spite of the popularity of Eq. �1� due to its simplicity
and the clear physical meanings of the two parameters, this
formalism is based on the perturbation theory and is limited
to the high temperature case. In actual organic crystals, elec-
tronic couplings can be large in some directions compared to
the reorganization energy, which makes Eq. �1� invalid.
When the coupling is large enough, i.e., in adiabatic limit,
the reactions may be controlled by the motion on the lower
adiabatic potential energy surface �PES� and the activation
rate theory22 can be applied. However, the calculation of the
rates in the “crossover region” where the electronic coupling
term changes from the weak to the strong regions, still pre-
sents a considerable challenge.23 Numerous attempts on the
basis of nonadiabatic transition state theories24–26 �NA-TSTs�
have been developed to incorporate these two limits in a
consistent and uniform way.

In most NA-TSTs, the nonadiabatic transition probability
is frequently manipulated by the Landau–Zener �LZ�
formula27 for the two-state curve crossing problem. How-
ever, it is well known that the LZ theory does not work in the
region where the kinetic energies are near or lower than the
crossing point, i.e., it does not incorporate the nonadiabatic
nuclear tunneling, and it neglects the coupling effect of the
electronic and nuclear tunnelings. Besides, the LZ probabil-
ity is not very accurate for the case of strong diabatic cou-
pling. Later, Zhu and Nakamura �ZN� proposed a new nona-
diabatic transition probability28 which is practically free
from the above drawbacks. It completely covers the whole
energy region in two-state curve crossing problem and can
be implemented by only using information of the adiabatic
PESs.

In a nonadiabatic chemical process, it is very difficult to
carry out a rigorous quantum mechanical rate constant for
multidimensional CT problems. Thus, some useful semiclas-
sical methods are required to be developed. Recently, Zhao
et al. combined the flux-side correlation function29 and the
ZN formulas28 to derive a semiclassical generalized NA-TST
formula for rate constants.30–32 In their work, a general seam
surface was taken into account, which led to a better result
than that from taking only minimum energy crossing point25

at the transition state. Furthermore, the formula can be
implemented in the configuration space instead of the phase
space integrals24 to save the computational time for complex
systems.

In this paper, we use this generalized NA-TST and the
ZN theory coupled with quantum chemistry calculations to
obtain the CT rates of quaterthiophene �4T� and
sexithiophene �6T� single crystals. We focus on how the ET
rates are changed with the electronic couplings as compared
to those from the widely used semiclassical Marcus theory in
organic material design. Figure 1 shows the crystal forms of
4T and 6T both of which have two molecules in each unit
cell and have been obtained by Luciano et al.33 and Siegrist

et al.,34 respectively. The choice of them, although arbitrary,
is motivated by the fact that they have larger electronic
couplings35 than other oligothiophenes. Thus, it can be
observed more obviously how the rates are deviated from
those of the semiclassical Marcus formula with electronic
couplings.

This paper is arranged as follows: In Sec. II, we outline
the theoretical background. Section III displays the numeri-
cal results and discussions. The conclusion is shown in
Sec. IV.

II. METHODOLOGICAL APPROACH

A. Generalized nonadiabatic transition state theory

Starting from flux-side correlation function,29 Zhao et al.
derived a CT rate formula within the framework of the tran-
sition state theory,

k =
kBT

h
��h2

2�

Z+

Zr

�

� dQP��,Q����S�Q� − �0����S�Q� − �0�e−�V1�Q�

� dQ���S�Q� − �0����S�Q� − �0�e−�V1�Q�

, �2�

with an effective coordinate-dependent transition probability,

P��,Q� = ��
0

	

dEse
−��Es−V1�Q��PZN�Es,Q� . �3�

Here, Es is the kinetic energy along the hopping direction,
PZN�Es ,Q� is the ZN nonadiabatic transition probability28 at
given energy Es, and Z+ and Zr are partition functions of the
activated complex and the reactant, respectively.

In order to treat multidimensional systems, one has to
employ the Monte Carlo approach to evaluate the integral in
the configuration space. To do so, Eq. �1� is rewritten as

FIG. 1. The crystal forms of 4T and 6T along the unique axis �b�. Left: the
unit cell of 4T. Right: the unit cell of 6T.
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k = Zmod� 1

2��
R1R2, �4�

with

R1 =
� dQe−�V1�Q����S�Q� − �0����S�Q� − �0�

� d�� dQe−�V1�Q����S�Q� − �0����S�Q� − ��
, �5�

R2 =
� dQe−�V1�Q����S�Q� − �0����S�Q� − �0�P��,Q�

� dQe−�V1�Q����S�Q� − �0����S�Q� − �0�

�6�

and

Zmod =
Z+Zr

cl

Zcl
+ Zr

, �7�

where the index cl indicates that the corresponding quantities
are evaluated classically, R1 represents a ratio of the free
energy on the seam surface and reactant partition function
Zcl, and R2 is the thermal averaged nonadiabatic transition
probability over the seam surface S�Q�−�0=0. A simplified
adaptive umbrella sampling approach36 combined with the
histogram technique has been used to simulate the R1 and
R2-type integrals.

In the linear response limit, Eq. �4� can be cast to

k = 
kMarcus, �8�

where kMarcus is Eq. �1� and 
 includes the effects of nona-
diabatic transition and tunneling. At high temperature and
weak electronic coupling limit, Eq. �8� can go back to Eq.
�1�. For the details of formula derivation and numerical
simulations, one can see Refs. 30 and 31.

B. Computational approaches

We first recall that the � in Eq. �1� includes the molecu-
lar geometry modifications that occur when an electron is
added or removed from a molecule �inner reorganization�, as
well as the modifications in the surrounding medium due to
polarization effects �outer reorganization�. The latter is diffi-
cult to evaluate theoretically.37 Here, we focus only on the
intramolecular reorganization energy ��in� and its vibrational
mode description.

Within the CT description picture for a molecule dimer
M1M2, the initial state is represented as �M1

+M2	 and the final
state is �M1M2

+	. The �in consists of two terms:2,3 the relax-
ation energy of neutral molecule at the optimal charged mo-
lecular geometry ��1� and that of charged molecule at the
optimized neutral molecular geometry ��2� �see Fig. 2�. The
�in can be evaluated in two ways: �i� directly from the adia-
batic PESs of neutral and charged species;38 or �ii� from the
addition of each normal-mode relaxation energy as can be
evaluated by the DUSHIN program developed by Reimers,39

which provides the partition of the �in into the contributions
from each vibrational mode.

The geometric optimization and the normal-mode analy-
sis of both 4T and 6T were carried out at the density func-
tional theory �DFT� level by using the hybrid Becke’s 3 pa-
rameters for exchange plus Lee-Yang-Parr’s correlation
functionals �B3LYP� with the 6-31G� basis set. All DFT cal-
culations were performed with the GAUSSIAN 03 package.40 It
is found that the total reorganization energies by summing
over the reorganization energies of the individual normal
modes are 288.3 and 255.6 meV, respectively, for 4T and 6T.
These values are very close to those by adiabatic potential
approach, 285.7 and 243.5 meV. This shows that the har-
monic oscillator approximation is excellent in describing the
CT process in these molecules.

Having obtained the quantum modes, the Hamiltonians
of reactants and products can be expressed as

H1 = 

i

Pi
2

2
+ V1�Q� �9�

and

H2 = 

i

Pi
2

2
+ V2�Q� , �10�

with the PESs

V1�Q� =
1

2

i

�i
2Qi

2 �11�

and

V2�Q� =
1

2

i

�i
2�Qi − Q0i�2, �12�

where

Q0i =
1

�i

�2�i. �13�

The �i and �i are the frequency and reorganization energy of
each mode. Then, the reaction coordinate � is defined as

FIG. 2. Sketch of the PESs for neutral and cationic states, showing the
vertical transitions and the relaxation energies �1 and �2.
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� = V1 − V2 = 

i
��i

2QiQ0i −
1

2
�i

2Q0i
2 � �14�

and the two adiabatic PESs are expressed as

E��Q� =
1

2
�V1�Q�

+ V2�Q�� � ��V1�Q� − V2�Q��2 + 4t2� , �15�

which divide the whole energy into three regions �E
Eb ,Eb�E�Et ,E�Et� �see Fig. 3�. Et �Eb� is the maxi-
mum �minimum� point of the lower �upper� adiabatic poten-
tial surface, with Rt �Rb� as the corresponding reaction coor-
dinate. t1

l �T2
l � and t1

r �T2
r� are the left and right reaction

coordinates of each energy in the lower �upper� adiabatic
potential. These parameters are required when ZN formulas
are used in Eq. �3�.

The next step is to calculate the electronic coupling term.
Several methods have been proposed in the literature. The
first one is the “energy splitting in dimer” �ESID� method,7,41

which is based on Koopmans’ theorem. In this case, the
charge transfer integral corresponds to the half of the split-
ting of the highest occupied molecular orbital �HOMO� or
lowest unoccupied molecular orbital levels for holes or elec-
trons. Valeev et al.42 cautioned recently that the transfer in-
tegral from dimer calculations cannot be reliably used to de-
scribe the extended systems and the site energy correction
�SEC� due to the substantial polarization effects of the crys-
tal environment should be taken into account. Li43 advised
that the electronic coupling can be obtained in the framework
of transition state theory. The transition state needed to be
determined, and the corresponding minimal energy splitting
�MES� is twice of the transfer integral based on Koopmans’
theorem. Another method is a direct method.15,18,21 The elec-
tronic coupling can be obtained by directly evaluating the
coupling element for the frontier orbitals.

In this paper, we adopt the direct method to obtain the
electronic coupling. The reason for our choice can be seen
below. Hartree–Fock �HF� bandwidth for a polymer has been
shown to be always about 20%–30% larger than the result
from �photoemission� experiments.44 Moreover from previ-
ous studies, the electronic coupling from the DFT orbital is

usually about 20% less than that of the HF orbital.45 Thus,
the Kohn–Sham–Fock operator is used instead of the HF
operator to obtain the coupling in the framework of the
DFT,15,18,21

V12
h = ��HOMO

0,site1 �F��HOMO
0,site2 	 , �16�

where �HOMO
0,site1 and �HOMO

0,site2 are the HOMOs of the two adja-
cent molecules 1 and 2 when no intermolecular interaction is
present. F is the Fock operator and its density matrix is con-
structed from noninteracting molecular orbitals:

F = SC�C−1. �17�

Here, S is the intermolecular overlap matrix, C and � are
molecular orbital coefficients and energies from one-step di-
agonalization without iteration. The PW91 exchange and
PW91 correlation functionals plus a 6-31G� basis set are
employed. It has been shown that this choice can give the
best description for electronic coupling at the DFT level.46

To show the reliability of this method, we have com-
pared the dependence of the transfer integral as a function of
the tilt angle � from the above four methods. As an example,
we take pentacene dimer, the transfer integral of which has
been investigated by Valeev et al.42 and our group.15 It can
be seen clearly in Fig. 4 that the ESID method7,41 overesti-
mates the electronic coupling when the two molecules of the
dimer are inequivalent in the crystal. The polarization effect
can lead to different site energies for inequivalent molecules
in the crystal. However, the present direct method is almost
identical to the SEC approach42 and the MES approach43

when the tilt angle is smaller than 60°. For larger tilt angles,
the difference among them is still very little. Thus, we can
believe that the direct method is reliable for the electronic
coupling.

To better understand such consistency among these
methods, some explanation is given below. The SEC ap-
proach obtains the orbitals from self-consistent iteration, so
overlap corrections are required. Our direct method is in the
spirit of first-order perturbation. Namely, it takes directly the
unperturbed individual molecule’s orbital and density matrix
to guarantee that, originally, the two molecules are noninter-

FIG. 3. Schematic two-state adiabatic potentials in the Marcus normal re-
gime. Since the free energy difference �G is zero in our case, Rt should be
equal to Rb.

FIG. 4. Evolution of the hole transfer integral as a function of the tilt angle.
The distance between a pair of pentacenes is R=3.5+1.5 sin �. The dash dot
line with square is the result from ESID approach; the dot line with circle
shows the MES result; the dash line with triangle shows the SEC results; the
solid line with diamond presents the result from the present direct method.

024704-4 Nan et al. J. Chem. Phys. 130, 024704 �2009�



acting, and only when putting them together can one get
interaction information with respect to the individual mol-
ecules. However, the direct method is easier to perform than
the former two methods. The SEC approach has to find the
frontier orbital which may be difficult for large systems. The
MES approach has to obtain all the energy splittings along
the reaction coordinate to find the MES.

Having obtained the quantum modes and electronic cou-
pling integrals, we can then calculate the CT rates in Eq. �4�.

C. Random walk simulations for diffusion constant
and mobility

Once the transfer rates have been obtained, we can then
calculate the mobility by the Einstein formula: �=eD /kBT.
Here, the diffusion constant D is simulated by random
walk.21 First, one molecule is arbitrarily chosen as the start-
ing point. The charge is only allowed to hop to the nearest
neighbor molecules with a probability p�=k� /
�k�, where �
is the hopping path. At each step, a random number r is
uniformly generated between 0 and 1. If 
�

j−1p��r�
�
j p�,

the charge then goes to the neighbor in the jth direction as
the next position of the charge. The simulation time is chosen
to be 10 �s, and the diffusion constant is obtained by
D=limt→	 l�t�2 /6t where l�t�2 is the mean squared displace-
ment. Two thousand simulations are performed to get a con-
verged diffusion constant.

In order to estimate the statistics error for mobility, one
would sort to carry out many times such processes each of
which contains 2000 simulations. This would be very time
consuming. Here, we adopt a simpler sampling approach,
which has been shown to be both very efficient and very
effective.21 Here is what we do. The 2000 results of mobility
obtained from simulation are large enough. Each result is
regarded as a point. We randomly select one point out of the
2000 for 2000 times. Then we will have another set of 2000
points. Note that the same points could be selected several
times because each selection is independent. We find that
when such random process is done for 100 times, the final
result is close to that of 200 000 simulations.21 Namely, now
we have 100 sets, each of which contains 2000 points. The
statistical error of mobility is then estimated by 1

2max�i�
− 1

2min�i�.

III. RESULTS AND DISCUSSION

Figure 5 shows several different types of dimers in the
4T and 6T single crystals. The corresponding transfer inte-
grals of the nearest neighbors are listed in Table I. The rates
from FGR �Refs. 20 and 21� have also been displayed to
make connection between the GNTST and the semiclassical
Marcus formulas. The relationship among them is described
in the following:

GNTST →

weak

coupling

FGR →

high

temperature

Marcus.

The results for 4T single crystals are shown in Fig. 6.
Four representative dimers have been chosen, which cover
from the weakest to the strongest electronic couplings. We
first compare the rates from the semiclassical Marcus and

FGR treatments. It can be seen in Fig. 6 that the Marcus rates
are much lower than the FGR rates at the room temperature
for various electronic couplings, but the former gradually
approach the latter with the temperature and become nearly

FIG. 5. �Color online� The chosen nearest neighbors in the 4T and 6T single
crystals: �a� for 4T; �b� for 6T. �a��1� and �b��1� correspond to the pathways
in the same layers; �a2� and �b2� are the hopping routes in the different
layers.

TABLE I. Transfer integrals of the nearest neighbors in 4T and 6T single
crystals at DFT level with PW91 exchange and PW91 correlation function-
als plus a 6-31G� basis set.

Dimers
4T

�meV�
6T

�meV�

1 39.95 36.00
2 39.94 36.08
3 39.81 36.06
4 39.79 36.14
5 4.45 3.37
6 4.45 3.37
7 2.36 0.72
8 2.36 0.73
9 2.35 0.73

10 2.34 0.73
11 0.68 0.38
12 0.68 0.38

024704-5 Charge transfer rates beyond perturbation J. Chem. Phys. 130, 024704 �2009�



identical to the latter when the temperature reaches 1000 K.
This is attributed to the fact that the semiclassical Marcus
theory is in the classical regime—that is, �� j /kbT�1. Al-
though the actual crystals cannot exist in such high tempera-
ture, it is still meaningful to comprehend the applicable con-
dition of different formulas from the theoretical standpoint.
For the FGR and GNTST treatments, it is obvious that the
GNTST rates are almost consistent with those from the FGR
treatment as expected when the transfer integral is smaller
than 5 meV. However, the GNTST results become smaller
than those of the FGR when the electronic coupling comes to
about 40 meV. Thus, the perturbation theory in the strong
electronic coupling regime predicts incorrect transfer rates.
Based on the above discussion, we can see in Fig. 6 that the
GNTST formula predicts more than three times larger rates
than the semiclassical Marcus formula at the room tempera-
ture. Furthermore, both formulas predict nearly identical re-
sults for the strongest electronic coupling when the tempera-
ture is close to 600 K and the GNTST begins to show
slightly smaller rates than those from the Marcus prediction.

The transfer rates for 6T have been shown in Fig. 7.
Since 4T and 6T have similar molecular conjugate structure
and crystal stack, the overall tendency is similar in Fig. 7 as
in Fig. 6.

Figure 8 shows the relationship between the CT rates
and the electronic couplings for 4T and 6T. As mentioned
above, the nuclear tunneling is excluded in the semiclassical
Marcus formula, so that the Marcus rates are consistently
smaller than the FGR rates. Compared to the GNTST predic-
tion of 4T, we can see in Fig. 8�a� that the GNTST rates are
nearly consistent with the rates from the FGR treatment
when the electronic coupling is smaller than 10 meV. This
exhibits the perturbation regime of the electronic couplings
for 4T. As the electronic couplings increase, the GNTST
rates are gradually smaller than the FGR rates and become
almost identical to the Marcus rates at about 40 meV. As we
pointed out previously, there are two things missing in the
semiclassical Marcus theory—quantum nuclear tunneling
and nonperturbation. The former tends to enhance, while the

latter tends to reduce the rate from the semiclassical Marcus
theory. Our GNTST rate contains both contributions. Thus, it
is just an accidental coincidence that at V=40 meV, the rates
from our GNTST is close to that from the semiclassical
Marcus theory. For 6T, it is obvious in Fig. 8�b� that the
perturbation regime of the electronic couplings is reduced to
5 meV. This is because 6T has smaller reorganization than
4T.

At this stage, it should be mentioned that there are other
derivations made by Bixon and Jortner47 where intramolecu-
lar modes are treated at the quantum mechanical level. While
it has the same first-order perturbative nature as the FGR
treatment, the Bixon–Jortner model is a further simplification
of FGR for one or two effective vibrational modes �harmonic
oscillators�. FGR and GNTST we used in this work have
considered all the intramolecular normal modes. In addition,
we have tried the Bixon–Jortner way for the transport prop-
erties, and we find that the way to define one or two effective
modes is quite arbitrary.

FIG. 6. Arrhenius plots of the CT rates for various electronic couplings in
4T single crystal as listed in Table I: �a� for dimer 11; �b� for dimer 10; �c�
for dimer 6; �d� for dimer 4. The square represents the GNTST results; the
solid line represents the FGR results; the dashed line represents the Marcus
results.

FIG. 7. Arrhenius plots of the CT rates for various electronic couplings in
6T single crystal as listed in Table I: �a� for dimer 11; �b� for dimer 7; �c� for
dimer 6; �d� for dimer 1. The symbols are the same as in Fig. 6.

FIG. 8. The CT rates vs electronic coupling strengths of the 4T and 6T
single crystal at 600 K. The solid line with square shows the GNTST results;
the dashed line with circle shows the results from the FGR treatment; the
dotted line with triangle shows the results from the semiclassical Marcus
formula.
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With the GNTST rates, the room temperature mobilities
for 4T and 6T are 0.066�0.004 and 0.067�0.004 cm2 /V s,
respectively. Note that our previous simulation based on the
semiclassical Marcus theory gave 0.021�0.0011 and
0.026�0.0013 cm2 /V s.48 Namely, the combined effect of
nuclear tunneling and nonperturbative effects result in a mo-
bility about three times as large as that from the semiclassical
Marcus theory. The reported measurements of mobilities
in oligothiophene thin films are in the range of
0.002–0.2 cm2 /V s,49 which is not precise enough to verify
the theoretical results.

IV. CONCLUSION

In this work, we have obtained the CT rates of 4T and
6T single crystals with a generalized NA-TST which applies
to any electronic couplings. The nuclear tunneling effect has
also been properly included into the prefactor of Eq. �8�. Our
calculation shows that the CT rates are no longer propor-
tional to the square of the electronic couplings as the case for
the FGR treatment, but become gradually smaller than the
latter with the electronic couplings. Due to the nuclear tun-
neling contribution, the GNTST results are obviously larger
than the Marcus results at 300 K, and become nearly identi-
cal with the Marcus results when the temperature is in-
creased to 600 K. We thus propose the GNTST as a more
general quantum chemistry approach for designing organic
semiconductors. For the oligothiophene, the GNTST-
calculated hole mobility is about three times as large as that
from the semiclassical Marcus theory.
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