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The time-convolutionless quantum master equation is widely used to simulate reduced dynamics of
a quantum system coupled to a bath. However, except for several special cases, applications of this
equation are based on perturbative calculation of the dissipative tensor, and are limited to the weak
system-bath coupling regime. In this paper, we derive an exact time-convolutionless quantum
master equation from the path integral approach, which provides a new way to calculate the
dissipative tensor nonperturbatively. Application of the new method is demonstrated in the case of
an asymmetrical two-level system linearly coupled to a harmonic bath. © 2009 American Institute
of Physics. �DOI: 10.1063/1.3108521�

I. INTRODUCTION

Quantum processes play an important role in many con-
densed phase phenomena,1,2 while accurate and efficient
methods to simulate quantum dynamics in multidimensional
systems remain one of the most important challenges in the-
oretical chemistry. A popular method to calculate quantum
dynamics with many degrees of freedom is to decompose the
total system into system and bath parts, where the system
part is described explicitly using the reduced density opera-
tor �RDO� and the bath part is treated implicitly in the equa-
tion of motion of the system RDO.3–5 Within the reduced
system dynamics framework, exact generalized quantum
master equations �GQMEs� can be derived using the
Nakajima–Zwanzig approach6–8 and the Hashitsume–
Shibata–Takahashi approach,9,10 which formulate the re-
duced system dynamics in the time-convolution �TC� and
time-convolutionless �TCL� forms. However, in practice,
most GQME calculations were based on approximate ver-
sions of the exact GQMEs, especially the second order per-
turbation approximations, due to their simplicity.

In their applications to condensed phase systems, a ma-
jor problem of the second order quantum master equations is
that their validity is not guaranteed because of the strong
system-bath coupling usually encountered in such systems.
To overcome this problem, fourth order perturbative quan-
tum master equations were derived.11–15 However, the formu-
lation of these fourth order perturbation expansions is rather
cumbersome and their extensions to higher orders are diffi-
cult. A different approach is to use the Padé approximation
for the perturbation series to infinite order,16–18 where only
the calculations of second and fourth order expansions are

needed. This approach works well when the collective bath
dynamics is near Markovian, while its applicability in gen-
eral systems is not very clear. An alternative approach is to
explicitly include a collective bath coordinate into the system
degrees of freedom, such that the weak coupling approxima-
tion could be applied.4,19 This approach relies on the reduc-
tion in coupling strength between the newly defined system
and bath parts, and was found to be successful in several
problems. Nonperturbative approaches to the GQME method
were also investigated. Golosov et al.20,21 derived an ap-
proximate memory equation based on the path integral tensor
multiplication method. Geva and co-workers22–24 introduced
a method to calculate exact or approximate dissipative ker-
nels in the TC form of GQME using correlation function
methods.

In this paper, we will investigate the possibility to non-
perturbatively calculate the dissipative tensor in the TCL
form of GQME. Comparing to the TC form of GQME, the
TCL GQME does not involve the integration over the system
history, and has found wide applications in quantum dissipa-
tive theory.5,25,26 Exact TCL quantum master equation exists
in the case of a harmonic oscillator coupled bilinearly to a
harmonic bath,5,27,28 and pure dephasing dynamics.29 How-
ever, nonperturbative dissipative tensor for general anhar-
monic systems has not been calculated before.

We will derive an exact TCL quantum master equation
using the path integral method. The path integral approaches
have been widely used to calculate condensed phase quan-
tum dynamics, leading to important analytical results28,30 and
efficient numerical algorithms.31–36 Calculating the time de-
rivatives of the exact path integral expression has also lead to
the exact hierarchical equations of motion �HEOM� method
involving a infinite number of auxiliary RDOs.37–42 It is also
found out that truncations of the HEOM equations at specific
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level can further provide a convenient formulation of high
order perturbative quantum master equations.15,41 In Refs. 43
and 44, the path integral formalism have been used to show
that the HEOM can be terminated at the first tier for a pure
dephasing system, and at the second tier for a harmonic sys-
tem bilinearly coupled to a harmonic bath, which leads to
exact TCL GQMEs in such special cases. It should be noted
that the argument in Ref. 44 that the second order TCL
GQME is exact for all coupling strengths is not correct, as
this is only true for pure dephasing cases.45

In this paper, we employ a different strategy from the
previous studies by explicitly writing the exact time-
dependent dissipative tensor in the path integral formula. The
applicability of the new method is then demonstrated on a
model system.

The remainder of this paper is organized as follows. In
Sec. II, we briefly review the TC and TCL forms of the exact
quantum master equations, and derive an exact TCL quantum
master equation from the path integral approach. A practical
way to calculate the exact dissipative tensor is then pre-
sented. In Sec. III, we present numerical results for the exact
time-dependent dissipative tensor and the reduced system
dynamics for an asymmetric spin-boson model. Conclusions
are made in Sec. IV.

II. THEORY

A. The TC and TCL quantum master equations

Considering a general total Hamiltonian describing a
system coupled to a bath

Ĥ = Ĥs + Ĥb + Ĥsb, �1�

where Ĥs is the system Hamiltonian, Ĥb is the bath

Hamiltonian, and Ĥsb couples the system and bath degrees of
freedom. For simplicity, we assume that

Ĥsb = F̂ � Q̂ , �2�

where F̂ is a system operator and Q̂ is a bath operator.
Time evolution of the total system and bath density

matrix �̂T is governed by the Liouville equation,

d

dt
�̂T = −

i

�
�Ĥ, �̂T� = −

i

�
L�̂T. �3�

The reduced system density operator �̂s�t� is defined as the
partial trace of �̂T over the bath degrees of freedom, �̂s�t�
=Trb�̂T�t�. The projection operator formalism by Nakajima
and Zwanzig allows us to derive the equation of motion for
�̂s�t�. A projection operator onto the system subspace is de-
fined as P= �̂b

eq
� Trb. Here, as in many previous studies, we

have used the equilibrium Boltzman bath density operator

�̂b
eq=e−�Ĥb /Tr e−�Ĥb as the reference operator in defining P.

The superoperator Q is defined as Q=1−P.
The formal exact generalized quantum master equation

can be written as3,7,28,46

d

dt
�̂s�t� = −

i

�
Ls

eff�̂s�t� − �
0

t

d�K����̂s�t − �� + I�t� , �4�

Ls
eff = Ls + TrbLsb�̂b

eq, �5�

K��� =
1

�2TrbLsbe−iQL�/�Q�Lb + Lsb��̂b
eq, �6�

I�t� = −
i

�
TrbLsbe−iQLt/�Q�̂T�0� , �7�

where K�t� is the dissipative memory kernel, and �̂T�0� is the
initial density operator of the total system. Equations �4�–�7�
consist of the TC form of the exact GQME.

We will choose a separable initial condition

�̂T�0� = �̂s�0� � �̂b
eq, �8�

the inhomogeneous term I�t� �Eq. �7�� then vanishes. Since
the equilibrium bath density operator is used in Eq. �8�,
Lb�̂b

eq
� �s=0, the kernel can be simplified as

K��� =
1

�2Trb�Lsbe−iQL�/�Lsb�̂b
eq� . �9�

Without losing generality, we also assume that the average of

the bath operator Q̂, �Q̂	eq
0 
Tr�Q̂�̂b

eq�=0, such that Ls
eff=Ls.

The TC form of GQME involves the integration over the
history of the system RDO. It has been shown that such
explicit dependence on the system history can be removed.
Particularly, Hashitsume and co-workers9,10 derived the fol-
lowing exact quantum master equation

d

dt
�̂s�t� = −

i

�
Ls

eff�̂s�t� − R�t��̂s�t� + Ĩ�t� , �10�

where

R�t��̂s�t� =
i

�
Trb�L���t� − 1��̂b

eq� , �11�

Ĩ�t� = −
i

�
Trb�L��t�e−iQLt/�Q�̂T�0�� , �12�

and ��t� is defined as the inverse of a superoperator

��t� = �P + e−iQLt/�QeiLt/��−1. �13�

If the initial condition �8� is used, Ĩ�t�=0. The time de-
rivative of �̂s�t� in Eq. �10� thus depends only on �̂s�t�. This
is the reason that Eq. �10� is called the TCL form of GQME.

B. TCL equation from the path integral approach

To perform the path integral calculations, we consider a

system coupled linearly to a harmonic bath, where Ĥb and

Ĥsb are given by

Ĥb = �
i=1

N � p̂i
2

2mi
+

1

2
mi�i

2q̂i
2 , �14�
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Ĥsb = F̂ � Q̂ = F̂ � �
i=1

N

ciq̂i, �15�

where q̂i, p̂i, mi, and �i are the coordinate, momentum, mass,
and frequency of the ith bath mode, respectively; ci is the
coupling coefficient between the system and the ith bath

mode. Q̂ is defined as a linear combination of bath coordi-
nates. We now define the reduced density matrix using the

eigenstates of F̂: �ab�t�= ��a��̂s�t���b	, where F̂��a	=�a��a	
and F̂��b	=�b��b	. �ab�t� can then be calculated using the
path integral approach by analytically integrating over the
harmonic bath47,48

�ab�t� = �
ef
� D�+�t�� D�−�t�ei/��S��+����−S��−�����

�e−F��+���,�−�����ef�0� . �16�

Here, �+��� and �−��� define the forward and backward sys-

tem paths, F̂��	���	=�	�����	���	, �+�t�=�a, �−�t�=�b,
�+�0�=�e, �−�0�=� f, S��+����, and S��−���� are the for-
ward and backward system actions, and F��+��� ,�−���� is
the Feynman–Vernon influence functional:

F��+���,�−���� =
1

�2�
0

t

ds�
0

s

duV−�s��
R�s − u��V−�u�

+ �i
I�s − u�V+�u�� . �17�

In the above Eq. �17�, V+���=�+���+�−���, V−���=�+���
−�−���, 
R and 
I are the real and imaginary parts of the
bath correlation function


R�t� + i
I�t� =
1

Zb
Tr�e−�Ĥbe�i/��ĤbtQ̂e−�i/��ĤbtQ̂� , �18�

with Zb=Tr e−�Ĥb.
The harmonic bath is usually characterized by the spec-

tral density J��� defined as

J��� =
�

2 �
i

ci
2

mi�i
��� − �i� . �19�


R�t� and 
I�t� can then be calculated


R�t� =
�

�
�

0



d�J���coth����

2
cos �t , �20�


I�t� = −
�

�
�

0



d�J���sin �t . �21�

The equation of motion for �ab�t� can be obtained by
taking the time derivative of Eq. �16�,

��ab�t�
�t

= −
i

�
�Ĥs, �̂s�t��ab −

1

�2 �
cd;ef

� D̃�+�t�� D̃�−�t��
0

t

�d�V−�t��
R�t − ��V−��� + i
I�t − ��V+����

�e�i/���S��+����−S��−�����e−F��+���,�−�����ef�0� . �22�

In the above Eq. �22�, the first term comes from the time
derivative of S��+�−S��−�, which gives the commutator be-

tween Ĥs and �̂s; the second term comes from the time de-
rivative of the influence functional. The restricted path inte-

gration D̃�+�t� and D̃�−�t� means that the forward and
backward path is fixed to �c and �d at time t−�, namely,
�+�t−��
�c and �−�t−��
�d.

The goal is to derive from Eq. �22� a closed equation for
�ab�t�. In general, this is a difficult task since all the �	���’s
are correlated in calculating the influence functional and
there is no simple way to express the second term in Eq. �22�
as a function of �ab�t�. In special cases such as a harmonic
oscillator system, or the pure dephasing case, exact TCL
equation can be obtained. It is also possible to derive a set of
nonclosed hierarchical equations of motion with an infinite
number of auxiliary density operators.37–42 In this paper, we
will adopt a different strategy.

To calculate the second term in Eq. �22�, we define

Kab;cd�t,�� = �
ef
� D̃�+�t�� D̃�−�t�e�i/���S��+����−S��−�����

�e−F��+���,�−�����ef�0� . �23�

The exact TCL Eq. �22� is now written as

��ab�t�
�t

= −
i

�
�Ĥs, �̂s�t��ab −

1

�2�
cd
�

0

t

d���a − �b�

��
R�����c − �d� + i
I�����c + �d��Kab;cd�t,�� .

�24�

The above Eqs. �23� and �24� are the starting point of our
derivation. They can also be used to derive approximate
GQMEs. In Appendix A, we show how the TC and TCL
second order GQMEs can be derived by applying approxi-
mations to the exact path integral result �Eqs. �23� and �24��.

To calculate Kab;cd�t ,�� nonperturbatively, we inverse
�ef�0� using the following equation:

�ab�t� = �
ef

�ab;ef�t��ef�0� , �25�

where ��t� can be calculated using Eq. �16�. The inverse can
be calculated as

�ef�0� = �
mn

�ef;mn
−1 �t��mn�t� . �26�

Kab;cd�t ,�� can now be calculated,

134106-3 Nonperturbative time-convolutionless GQME J. Chem. Phys. 130, 134106 �2009�



Kab;cd�t,�� = �
ef
� D̃�+�t�� D̃�−�t�e�i/���S��+����−S��−�����e−F��+���,�−�����ef�0�

= �
mn,ef

� D̃�+�t�� D̃�−�t�e�i/���S��+����−S��−�����e−F��+���,�−�����ef;mn
−1 �t��mn�t�

= �
mn

Mab;cd
mn �t,���mn�t� , �27�

where Mab;cd
mn �t ,�� is defined as

Mab;cd
mn �t,�� = �

ef
� D̃�+�t�� D̃�−�t�e�i/���S��+����−S��−�����

�e−F��+���,�−�����ef;mn
−1 �t� . �28�

By putting Eq. �27� into Eq. �24�

��ab�t�
�t

= −
i

�
�Ĥs, �̂s�t��ab − �

mn

Rab;mn�t��mn�t,�� . �29�

The dissipative tensor Rab;mn�t� is defined as

Rab;mn�t� =
1

�2�
cd
�

0

t

d���a − �b��
R�����c − �d�

+ i
I�����c + �d��Mab;cd
mn �t,�� . �30�

C. Numerical method to calculate R„t…

Clearly, the above Eqs. �28�–�30� is only useful in case
�a� the dissipative tensor R�t� converges to a fixed value
after a short period of time �0, otherwise, calculating ��t� at
long time requires that we already know the exact dynamics;
�b� ��t� and Kab;cd�t ,�� can be calculated using exact or
approximate methods until R�t� converges to a fixed value.
The first condition usually holds when the bath correlation
function decays much faster than the system dynamics. The
second condition is also not a trivial problem, since many
numerical path integral algorithms only work for a short pe-
riod of time, and the accuracy of most approximate methods
deteriorate at long times. We will assume that the above two
conditions are satisfied, and proceed with the numerical cal-
culation of R�t�.

To calculate R�t�, we need to obtain ��t� and Kab;cd�t ,��
first. The path integral expressions Eqs. �16� and �23� are first
discretized, using methods such as the quasiadiabatic path
integral method by Makri and co-workers.33–36 ��t� can be
calculated in the usually way by setting �̂s�0� to different
initial conditions. �−1�t� is then obtained by inversion of
��t�. Calculation of the Kab;cd�t ,�� term using the path inte-
gral method is illustrated Fig. 1, namely, we need to fix the

system coordinates both at the end points �at time 0 and t�,
and the middle points �at time t−�� when summing over all
the paths. Each path is indexed with six labels, such that all
paths with the same end points and middle points are
summed together. This is a rather general approach that
could be applied to both direct summation �for short time�
and Monte Carlo calculations �for longer time� of the dis-
cretized path integral expression.

III. RESULTS

In this section, we apply the above derived equations to
calculate the exact dissipative tensor in an asymmetric spin-
boson model. The system Hamiltonian can be written as

Ĥs = ���̂x + ���̂z, �31�

where �̂x and �̂z are the Pauli matrices. The system is as-
sumed to couple with the harmonic bath via the operator

F̂= �̂z.
Numerical results reported below were obtained for

��=��=1, ���=5. We also assume an Ohmic spectral den-
sity J��� with exponential cutoff

J��� =
�

2
��e−�/�c, �32�

with the parameters �=0.1 and �c=7.5�.
We first compare the exact dissipative tensor to the weak

coupling �WC� result using Eq. �A10� in Appendix A. The
dissipative tensor for the spin-boson model is represented by
a 4�4 complex-valued matrix. From Eqs. �30� and �A10�,
the matrix elements of both the exact and approximate dis-
sipative tensors Rab,mn�t� are zero when a=b. They also have
the following symmetry relationships: R12;11�t�=R21;11�t��,
R12;12�t�=R21;21�t��, R12;21�t�=R21;12�t��, and R12;22�t�
=R21;22�t��. Therefore, there are only four independent ma-
trix elements, which will be chosen as R12;11�t�, R12;12�t�,
R12;21�t�, and R12;22�t�. The real and imaginary parts of the
above four matrix elements are shown in Figs. 2 and 3, re-
spectively. We can see that the real part of R12;21�t�, and the
imaginary parts of R12;12�t� and R12;21�t� are not well con-
verged in the time interval studied. However, their values are
rather small and will not lead to large errors in the dynamics.

To calculate the reduced system dynamics, we assume
that the initial state is �̂s�0�= �1	�1�. The population on state
�1	 from the nonperturbative and second order TCL form of
GQME is shown as a function of time in Fig. 4. During the
calculation, the dissipative tensors for �t�2.4 are assumedFIG. 1. The path integral scheme to calculate Kab,cd�t ,��.
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to be constant using the values of R�t=2.4 /��. For compari-
son, the numerically exact result from the tensor multiplica-
tion method by Makri and co-workers33–36 is also presented.
We can see that the result of nonperturbative TCL GQME is
essentially the same as the tensor multiplication result. The
second order TCL GQME also performs better than its TC
counterpart shown in Ref. 22.

IV. CONCLUSION

We have demonstrated that it is possible to calculate the
exact dissipative tensor in the TCL GQMEs nonperturba-
tively in a general anharmonic system. Efficient application
of the new method requires that the bath correlation decays
in a short period of time such that the dissipative tensor
converges quickly. In this sense, the nonperturbative GQME
method presented in this study employs similar ideas as used
in the path integral tensor multiplication method33–36 and the
nonperturbative TC quantum master equation method,22–24

by trying to calculate long time dynamics using accurate

short time information. They should be applied to similar
kind of problems, and may both have problems in the case of
slow baths.

On the other hand, the three methods provide different
ways to incorporate the bath effects on the reduced system
dynamics. The tensor multiplication approach uses a trun-
cated tensor to describe the coupled system-bath states, and
multiplication with the influence functional terms to do the
time propagation. The TC and TCL GQMEs use reduced
density operators to describe the system degrees of freedom,
and use the dissipative kernel and tensor to incorporate bath
effects on system dynamics. The computational costs of the
nonperturbative TC and TCL GQMEs can also be compared.
If N is the size of system basis, the TCL quantum master
equation approach scales as N4 after the dissipative tensor is
obtained. This is improved over the nonperturbative TC
quantum master equation approach, due to the fact that it is
no more necessary to perform the integration over the system
history. Calculation of the dissipative tensor scales as N6,
which may or may not be more efficient than calculating the
dissipative kernel in the nonperturbative TC approach, de-
pending on the particular problem investigated. The current
formulation of the nonperturbative TCL approach could also
serve as a starting point for further approximations. Such
possibilities are currently investigated.
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APPENDIX A: DERIVATION OF THE SECOND ORDER
QUANTUM MASTER EQUATIONS

We will derive the second order quantum master equa-
tions by applying proper approximations to Eq. �23�. If we

FIG. 2. The real part of �a� R12;11�t�, �b� R12;12�t�, �c� R12;21�t�, and �d�
R12;22�t� for the nonperturbative TCL form of GQME �Eq. �30�� �solid line�.
Also shown are the corresponding predictions in the second order perturba-
tion approximation �Eq. �A10�� �dashed line, WC indicates the weak cou-
pling approximation�.

FIG. 3. Same as Fig. 2, for the imaginary parts of �a� R12;11�t�, �b� R12;12�t�,
�c� R12;21�t�, and �d� R12;22�t�.

FIG. 4. The population dynamics of �11�t� for an asymmetrical two-level
system coupled to a bath. The solid line is the result of the nonperturbative
GQME in the TCL form �Eq. �29��; the filled circles are the numerical exact
result obtained via the tensor multiplication method by Makri and co-
workers; the dashed line is the prediction from the second order GQME in
the TCL form �Eq. �A9�� �weak coupling approximation�.
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neglect the system-bath interaction during the time interval
from t−� to t, by replacing the total system propagator

e−�i/��Ĥ� with e−�i/���Ĥs+Ĥb�� when calculating Kab;cd�t ,��
�Eq. �23��,

Kab;cd�t,�� � �a�e−�i/��Ĥs��c	�d�e�i/��Ĥs��b	�cd�t − �� . �A1�

Then from Eq. �24�, the dynamics of �̂s�t� reduces to

��ab�t�
�t

= −
i

�
�Ĥs, �̂s�t��ab −

1

�2�
cd
�

0

t

d���a − �b�

��
R�����c − �d� + i
I�����c + �d��

��a�e−�i/��Ĥs��c	�d�e�i/��Ĥs��b	�cd�t − ��

= −
i

�
�Ĥs, �̂s�t��ab −

1

�2�
cd
�

0

t

Kwc
ab;cd����cd�t − �� ,

�A2�

where the second order dissipative kernel Kwc
ab;cd is defined as

Kwc
ab;cd��� = ��a − �b��
R�����c − �d� + i
I�����c + �d��

��a�e−�i/��Ĥs��c	�d�e�i/��Ĥs��b	 . �A3�

The above Eqs. �A2� and �A3� consist of the second order
TC quantum master equation.

To derive the second order TCL quantum master equa-
tion, we apply the Born approximation by applying the same
approximation as in Eq. �A1� to calculate Eq. �16�

�ab�t� � �
cd

�a�e−�i/��Ĥs��c	�d�e�i/��Ĥs��b	�cd�t − �� , �A4�

which can be inverted

�cd�t − �� = �
ef

�c�e�i/��Ĥs��e	�f �e−�i/��Ĥs��d	�ef�t� . �A5�

Equation �A2� is then written as

��ab�t�
�t

= −
i

�
�Ĥs, �̂s�t��ab −

1

�2 �
cd;ef

�
0

t

d���a − �b�

��
R�����c − �d� + i
I�����c + �d��

��a�e−�i/��Ĥs��c	�d�e�i/��Ĥs��b	�c�e�i/��Ĥs��e	

��f �e−�i/��Ĥs��d	�ef�t� . �A6�

By noticing that

�
cd;ef

��a − �b��c�a�e−�i/��Ĥs��c	�d�e�i/��Ĥs��b	�c�e�i/��Ĥs��e	�f �e−�i/��Ĥs��d	�ef�t�

= �
c,e

��a − �b��c�a�e−�i/��Ĥs��c	�c�e�i/��Ĥs��e	�eb�t�

= �
e

��a − �b��a�e−�i/��Ĥs�F̂e�i/��Ĥs��e	�eb�t� , �A7�

and

�
cd;ef

��a − �b��d�a�e−�i/��Ĥs��c	�d�e�i/��Ĥs��b	�c�e�i/��Ĥs��e	�f �e−�i/��Ĥs��d	�ef�t�

= �
d,f

��a − �b��d�d�e�i/��Ĥs��b	�f �e−�i/��Ĥs��d	�af�t�

= �
f

��a − �b��f �e−�i/��Ĥs�F̂e�i/��Ĥs��b	�af�t� , �A8�

Equation �A6� can then be written as

��ab�t�
�t

= −
i

�
�Ĥs, �̂s�t��ab −

1

�2�
cd

Rwc
ab;cd�t��cd�t� , �A9�

where

Rwc
ab;cd�t� = �

0

t

d���a − �b��
R��� + i
I����

��a�e−�i/��Ĥs�F̂e�i/��Ĥs��c	�bd + �
0

t

d���b − �a�

��
R��� − i
I�����d�e−�i/��Ĥs�F̂e�i/��Ĥs��b	�ac.

�A10�
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Equations �A9� and �A10� consist of the TCL second order
quantum master equation, and they are used to obtain the
perturbative TCL quantum master equation results shown in
Figs. 2–4. As in the above derivation of Eqs. �A9� and �A10�,
the second order TCL quantum master equation is usually
regarded as a further approximation to its TC counterpart by
applying the Born approximation �Eqs. �A4� and �A5��.
However, we can see from the above derivation that Eqs.
�A1� and �A4� involve the same approximation, so generally
we cannot tell which one of the second order quantum mas-
ter equations is more accurate. In fact, the TCL equation may
become superior in particular problems due to the cancella-
tion of errors when applying Eqs. �A1� and �A5� simulta-
neously.
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