
Considerable progresses have been made recently in methods
to rigorously calculate quantum dynamics in multi鄄dimensional
systems [1-5]. However, applications of these exact methods are

still limited, and approximate methods are of great interest. In
particular, various mixed quantum鄄classical methods have been
developed. The strategy of the mixed quantum鄄classical methods
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混合量子鄄经典方法计算电荷转移速率及其在实际体系中的应用
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摘要： 混合量子鄄经典方法在复杂分子体系动力学过程的模拟方面有重要应用.我们采用 Ehrenfest方法、surface
hopping方法和混合量子经典 Liouville方程计算了在非绝热极限下的电荷转移速率.然后将这三种方法应用于
有机半导体材料电荷转移速率的计算.研究结果发现, Ehrenfest方法和 surface hopping方法可能严重偏离正确
的结果. 偏离的原因是这两种方法没有正确处理相干项的运动, 而且这种偏离在涉及到高频模式时显得更加
严重.
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Mixed Quantum鄄Classical Approaches to Calculating Charge Transfer
Rate Constants: Applications to Realistic Systems
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Abstract： Mixed quantum鄄classical methods are of great interest in simulating dynamic processes of complex
molecular systems. We investigated the application of the Ehrenfest method, the surface hopping method, and the
mixed quantum classical Liouville equation method to calculate charge transfer rates in the nonadiabatic limit. The
three methods were applied to realistic problems of charge transfer in organic semiconductor materials. We found that
both the Ehrenfest and surface hopping methods may deviate significantly from the correct result. This deviation is due
to an incorrect treatment of the coherence term, and is more severe when high frequency modes are involved.
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is to describe the slow nuclear dynamics by classical mechanics
while retaining quantum description for the fast electronic (or
light weighted atomic) degrees of freedom (DoFs). Equations of
motion for the quantum and classical DoFs are coupled together:
the motion of the classical DoFs results in a time鄄dependent
quantum Hamiltonian, while at the same time, evolution of the
quantum DoFs alters the forces acting on the classical ones. A
critical challenge in developing mixed quantum鄄classical meth-
ods is to properly treat the coupled motion of the quantum and
classical DoFs. Different approaches have been developed to
simulate the mixed quantum鄄classical dynamics, among which
the most commonly used methods are the Ehrenfest method[6-8],
the surface hopping (SH) method [9-16], and the more recently de-
veloped mixed quantum-classical Liouville (MQCL) method[17-22].

In both the Ehrenfest and SH methods, dynamics of the quan-
tum subsystem is propagated fully coherently under the influ-
ence of a classical trajectory, which is sampled from a classical
or quasi鄄classical initial distribution. However, the back鄄reaction
to the classical dynamics is treated differently in these two meth-
ods. In the Ehrenfest method, the classical DoFs evolve on a
mean field potential energy surface calculated from the expecta-
tion value of the electronic鄄nuclear potential energy with respect
to the time鄄dependent quantum wave function. In the SH
method, the classical DoFs move on a fixed potential surface at
a given time, with localized (instantaneous) transitions between
different potential surfaces using a transition probability deter-
mined by the motion of the quantum subsystem. In the MQCL
method, the mixed quantum鄄classical dynamics is first formulat-
ed in the form of coupled Liouville equations, various propaga-
tion schemes are then designed to simulate the dynamics of
these phase space equations.

All these methods have been applied to wide ranges of prob-
lems. An interesting and often overlooked problem is the validi-
ty of these methods in specific kinds of applications. Berne and
coworkers have investigated the applicability of the mixed quan-
tum鄄classical approaches in calculation of relaxation rate con-
stants[23-25] and vibronic spectra[26-27]. In this paper, we perform sim-
ilar studies in the charge transfer rate calculations by first explic-
itly deriving the rate constants from the Ehrenfest, SH, and MQCL
methods, and then applying them to calculate charge transfer
rates in organic semiconductors. The nonadiabatic limit is con-
sidered in this study since exact results can be obtained and
compared with the mixed quantum鄄classical approaches. Charge
transfer process in organic semiconductors has attracted much
theoretical attentions in the emerging field of organic electron-
ics[28-30]. We will show that the Ehrenfest and SH methods may fail
when high frequency modes are involved, and should be used
with caution. The remaining parts of the article are organized as
follows. In Sec.1, we present the model Hamiltonian and derive
the charge transfer rate expressions in the nonadiabatic limit us-
ing the Ehrenfest, SH (in the diabatic representation, see Sec.1.2),
and MQCL methods. Numerical results for realistic examples of
charge transfer rates in organic semiconductor materials are pre-

sented in Sec.2. The reason that the Ehrenfest and SH results de-
viate from the correct ones is also analyzed. The conclusions are
made in Sec.3.

1 Theory
We will consider the spin鄄boson (SB) Hamiltonian [31-32] as a

simple model to study charge transfer reactions. The total system
and bath Hamiltonian is written as

H=驻滓x-(着/2+HC)滓z+HB (1)
where 滓x and 滓z are the Pauli matrices, 驻 is the electronic matrix
element that couples the donor state ｜1〉and the acceptor state
｜2〉, 着 is the energy difference between the two states. HB and
HC are the bath Hamiltonian and the system鄄bath coupling
Hamiltonian, respectively, and can be written as

HB=
j

移 1
2 (p2

j +棕2
j x2

j ), HC=
j

移cjxj (2)

Here, pj and xj are the jth mass鄄weighted nuclear normal mo-
mentum and coordinate, respectively, 棕j is the frequency of the
jth normal mode and cj is the coupling coefficient between the
charge and the jth nuclear normal mode. The essential property
of the harmonic bath is characterized by its spectral density J(棕),
which is defined as

J(棕)= 仔
2 j
移 c2

j

棕j
啄(棕-棕j) (3)

where 棕 is electric frequency. The reorganization energy 姿 can
be calculated from J(棕) as

姿= 4仔
肄

0乙 d棕
棕 J(棕) (4)

To calculate the charge transfer rates, we assume that the ini-
tial state is equilibrated on the donor state 籽0=e-茁(HB-HC)/Z1茚渣1〉〈1渣,
where Z1=Tre-茁(HB-HC). 茁=1/(kBT), kB is the Boltzmann constant and
T is temperature. We will also consider the nonadiabatic limit
where 驻 is small, such that, during the establishment of the rate
dynamics, the charge population on the donor state is almost un-
changed, and a perturbation treatment of 驻 can be applied. In the
following subsections, we will derive the charge transfer rates
for the Ehrenfest, SH, and MQCL methods by treating only the
electronic DoFs quantum mechanically.

For both the Ehrenfest and SH methods, dynamics of the
quantum subsystem is governed by a time鄄dependent Hamilto-
nian that depends on the classical DoFs. We expand the wave
function of the quantum subsystem｜鬃(t)〉as

渣鬃(t)〉=a1(t)渣1〉+a2(t)渣2〉 (5)
where a1(t) and a2(t) are the complex鄄valued expansion coeffi-
cients. It is convenient to use the density matrix notation by
defining Sx(t)=a1(t)a2(t)鄢+a1(t)鄢a2(t), Sy(t)=-i[a1(t)鄢a2(t)-a1(t)a2(t)鄢],
Sz(t)=a1(t)a1(t)鄢-a2(t)鄢a2(t), where Sz is the population difference
between state 渣1〉and state 渣2〉, Sx and Sy are two times of the real
and imaginary parts of the coherence term between the two
states, respectively. The equations of motion can now be written
as (for simplicity, we have assumed that 攸=1 throughout the pa-
per)
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d
dt Sx(t)=[着+2HC(t)]Sy(t) (6)

d
dt Sy(t)=-[着+2HC(t)]Sx(t)-2驻Sz(t) (7)

d
dt Sz(t)=2驻Sy(t) (8)

1.1 The Ehrenfest method
In the Ehrenfest method, the nuclear potential energy function

that determines the classical dynamics is the expectation value
of the electronic鄄nuclear potential energy with respect to the
electronic wave function,

d
dt xj(t)= 坠坠pj

〈鬃(t)渣H渣鬃(t)〉=pj(t) (9)

d
dt pj(t)=- 坠坠xj

〈鬃(t)渣H渣鬃(t)〉=-棕2
j xj(t)+cjSz(t) (10)

The simultaneous propagation of Eqs.(9-10) and Eqs.(6-8)
defines the Ehrenfest method for the SB model. As we have as-
sumed that the initial state is on the donor state, Sx(0)=Sy(0)=0 and
Sz(0)=1. In the weak coupling limit and at short time, Sz(t)抑1,
and we have

d
dt pj(t)抑-棕2

j xj(t)+cj (11)

xj(t) can then be solved from Eqs.(9) and (11)

xj(t)- cj
棕2

j
=(xj0- cj

棕2
j

)cos棕jt+ pj0
棕2

j
sin棕jt (12)

where xj0 and pj0 are the initial coordinate and momentum of the
jth bath mode.

Dynamics of the quantum DoFs can also be calculated analyt-
ically. It can be shown that the following equation now provides
the solution to Eqs.(6-8)

Sx(t)+iSy(t)=-2i驻 t

0乙 dt1Sz(t1)exp(- i
t

t1
乙 [着+2HC(子)]d子) (13)

such that
d
dt Sz(t)=2驻Im(Sx+iSy)(t)

=-4驻2Re
t

0乙 dt1Sz(t1)exp(- i
t

t1
乙 [着+2HC(子)]d子)蓘 蓡

=-4驻2Re
t

0乙 dt1exp(- i
t

t1
乙 [着+2HC(子)]d子)蓘 蓡Sz(t) (14)

The dynamics of the quantum system can be obtained by averag-
ing over mixed quantum鄄classical trajectories.

Now we define P1(t) as the population on the donor state. Since
P1(t)抑1 at short time, we can obtain from Eq.(14) that

d
dt P1(t)抑-k(t)P1(t) (15)

where the time dependent rate constant k(t) is as follows,

k(t)=2驻2Re
t

0乙 dt1〈exp(- i
t

t1
乙 [着+2HC(子)]d子)〉 (16)

Here, the average is taken over the initial probability distribution
of the classical DoFs. As time increases, k(t) reaches a plateau,
and the electronic dynamics can be described as a rate process.
The charge transfer rate can then be obtained by taking t邛肄 in
Eq.(16), when also using the stationary property of HC(t),

k=2驻2Re
肄

0乙 dt〈exp(- i
t

0乙 [着+2HC(子)]d子)〉 (17)

We will use the Wigner transformed distribution to include
the quantum effects in the initial sampling[33-36], which is impor-

tant to account for the quantum zero鄄point motion for high fre-
quency modes. Since the initial distribution is assumed to be the
thermal equilibrium on the donor state, it can be calculated as

籽w(x0, p0)= 1
(2仔)N 乙d驻xe-ip0·驻x〈x0+ 驻x

2
e-茁(HB-HC)

Z1
x0- 驻x

2 〉

=
j

仪 1仔 tanh(茁棕j /2)exp(- tanh(茁棕j /2)
棕j

p2
j0 +蓘

棕2
j (xj0 - cj

棕2
j

) 蓡 ) (18)

where x0=(x1, x2,…)T and 驻x=(驻x1, 驻x2,…)T are column vectors,
respectively. Using the above Eqs.(17-18),

k=2驻2
肄

0乙 dtcos(着t+
j

移Sj棕jt)exp(-
j

移Sj
1-cos棕j t

tanh(茁棕j /2) ) (19)

where Sj=2c2
j /棕3

j , is the Huang鄄Rhys factor for the jth bath mode.
It should be noted that in calculating linear absorption spec-

tra[25-27], the mixed quantum鄄classical result can be obtained by tak-
ing the classical limit of the full quantum formula. Although a
similar route may also be taken here, our derivation above is
more direct from the mixed quantum鄄classical equations when
considering the static quantum effects described using the initial
distribution Eq.(18).
1.2 The surface hopping method

In the SH calculations presented below, the diabatic represen-
tation is used. Although the adiabatic representation was often
found to be superior in many applications [16], in the case of the
nonadiabatic limit for the SB model, the small coupling 驻 will
cause singularity for the coupling vectors in the adiabatic repre-
sentation. Instead, the diabatic representation becomes more
convenient.

The equations of motion for the nuclear DoFs on the two dif-
ferent surfaces are found to be

d
dt xj(t)=pj(t), d

dt pj(t)=-棕2
j xj(t)依cj (20)

where +(-) is used for dynamics on the donor (acceptor) surface.
In the SH method, dynamics of the classical DoFs hops be-

tween different electronic surfaces. Different hopping algorithms
have been proposed in the literature, among which the“fewest
switches”algorithm, suggested by Tully[10,16] has been widely used.
According to this algorithm, the probability per unit time of a
hop from quantum state 渣1〉to state 渣2〉is given by

P12(t)=驻 i(a1(t)鄢a2(t)-a1(t)a2(t)鄢)
渣a1(t)渣2

抑-驻Sy(t) (21)

Dynamics of the quantum DoFs is the same as that in the
Ehrenfest method, so we can apply Eq.(16) to calculate k(t) for the
SH method. The only difference here is that HC(子) is now calcu-
lated along a“hopping”trajectory that switches between donor
and acceptor states. After a short relaxation time, k(t) will reach
a plateau, which allows us to calculate the charge transfer rate
from the SH method by taking t邛肄.

From Eq. (21), we know that the hopping probability is pro-
portional to 驻2. Such that in the weak electronic coupling limit,
the probability for propagation on the acceptor surface is small,
and the majority of the trajectories propagates on the donor sur-
face before k(t) reaches the plateau. In such cases, the effect of
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surface hopping on the trajectory averaging can be neglected,
and the SH rate constant is the same as the Ehrenfest result,

kSH=2驻2
肄

0乙 dtcos(着t+
j

移Sj棕jt)exp(-
j

移Sj
1-cos棕j t

tanh(茁棕j /2) ) (22)

1.3 The MQCL method
In the mixed quantum鄄classical Liouville equation method,

dynamics of the Wigner transform of the quantum density matrix
is first obtained using the quantum鄄classical approximation[17-18, 21-22].
For the SB model, the MQCL equations can be obtained as

坠籽11坠t =-i驻(籽21-籽12)-
j

移 pj
坠籽11坠xj

-(棕2
j xj-cj) 坠籽11坠pj

蓘 蓡 (23)

坠籽22坠t =i驻(籽21-籽12)-
j

移 pj
坠籽22坠xj

-(棕2
j xj+cj) 坠籽22坠pj

蓘 蓡 (24)

坠籽12坠t =i(着+2
j

移cjxj)籽12-i驻(籽22-籽11)-
j

移 pj
坠籽12坠xj

-棕2
j xj

坠籽12坠pj
蓘 蓡 (25)

坠籽21坠t =i(着+2
j

移cjxj)籽21-i驻(籽11-籽22)-
j

移 pj
坠籽21坠xj

-棕2
j xj

坠籽21坠pj
蓘 蓡 (26)

In the above equations, the density distribution 籽ab (x, p) is the multi鄄
dimensional Wigner transform of the total density operator 籽:

籽ab(x, p)= 1
(2仔)N 乙 d驻xe-ip·驻x〈a, x+ 驻x

2 渣 籽渣x- 驻x
2 〉 (27)

where a, b=1, 2, denote the electronic states and x=(x1, x2, …)T

and 驻x=(驻x1, 驻x2,…)T are column vectors, respectively.
Eqs.(23-26) are known to be exact for the spin鄄boson model

(e.g., Refs.[20,37]). However, this set of multi鄄dimensional cou-
pled partial differential equations is still hard to solve. In the non-
adiabatic limit, the MQCL method will give the correct Fermi
golden rule (FGR). The following derivation is for the reason of
completeness and comparison with the Ehrenfest and SH meth-
ods.

We first define

P1(t)=乙dxdp籽11(x, p; t) (28)
then integrate the phase space variables x and p in Eq.(23),

dP1(t)
dt =-2驻Im乙dxdp籽12(x, p; t) (29)

The perturbation calculation can be performed by setting 籽22 and
籽11 as their initial values in Eq.(25), 籽12 can then be calculated us-
ing classical trajectory method,

Im乙dxdp 籽12(x, p; t)=驻Re
t

0乙 dt1〈exp(- i
t

t1
乙 [着+2HC(子)]d子)〉蓘 蓡 (30)

The initial distribution is taken from Eq.(18), while the dynam-
ics is on the average surface,

xj(t)=xj0cos棕jt+ pj0
棕j

sin棕jt (31)

Assuming that P1(t)抑1 when the plateau is reached, by combin-
ing Eqs.(29) and (30)

k=2驻2
肄

0乙 dtcos(着t+
j

移Sjsin棕jt)exp(-
j

移Sj
1-cos棕j t

tanh(茁棕j /2) ) (32)

This is the FGR result.

2 Results and discussion
The Ehrenfest and SH rates (Eq.(19) and Eq.(22)) only have

subtle difference with the FGR rate (Eq.(32)): in calculating the

oscillatory part of the integrand, the sin棕jt term in Eq.(32) is re-
placed by the 棕jt term. This will not cause a problem when only
low frequency modes are involved, or when the exponential part
decays very quickly. As in such cases, it becomes safe to replace
sin棕jt with 棕jt, and the two rate expressions are equivalent.
However, this is not the case when high frequency modes are in-
volved, and we will present two such examples in calculating
charge transfer rates in organic semiconductors below. In such
systems, high frequency vibrations are ubiquitous and their con-
tributions to the reorganization energy are usually large[28-29,38-39].

We choose rubrene and sexithiophene as two examples to
show the problem when high frequency modes are involved.
Molecular structure of the two systems, as well as the methods
to obtain the parameters used in the SB model are described in
Ref.[40-41]. The hole self鄄exchange reactions were considered
in this paper, such that 着=0. The weak electronic coupling ap-
proximation is valid for the charge transfer in the c direction of
rubrene (驻=12.1 cm-1) and sexithiophene (驻=5.8 cm-1)[40-41].

In the hole self鄄exchange reactions considered for a molecular
dimer, the two electronic states are 渣M +

1 M2〉and 渣M1M +
2〉, where

the positive charge resides on monomers 1 and 2, respectively.
The harmonic boson modes that couple to the electronic DoFs
consist of normal modes from both the neutral and cationic
molecules. The contributions to the reorganization energy from
each intramolecular mode of both the neutral and cationic
molecules are shown in Fig.1. Using these parameters, the
charge transfer rates were obtained from Eqs.(19), (22), and (32)
and are shown in Fig.2. We can see that the difference between
the Ehrenfest and SH methods and the FGR is significant. For
rubrene, the rates from the Ehrenfest and SH methods are found
to be larger than the result of FGR in very low temperatures and
become substantially lower than the result of FGR when the
temperature is higher than 20 K. For sexithiophene, the rates
from the Ehrenfest and SH methods are consistently lower than
the FGR result in the investigated temperature region.

The common feature of the two systems is that the high fre-
quency modes contribute significantly to the reorganization en-
ergy, which leads to different rates calculated from Eqs.(19), (22),
and (32). To see more explicitly that the difference be- tween the
Ehrenfest (SH) and FGR rates is mainly due to the high frequen-
cy modes, we calculated the integrands of Eqs.(19), (22), and (32)
as a function of time for rubrene, and the results are shown in
Fig.3. The inset shows the contributions from the low frequency
(棕约500 cm-1) and high frequency (棕跃500 cm-1) modes to the
total integrand. It can be seen that when all modes are consid-
ered, the integrands of Eqs.(19) and (22) differ significantly from
that of Eq.(32), and the difference is largely caused by the high
frequency modes, which eventually leads to the different elec-
tron transfer (ET) rates.

As the MQCL method is exact in the nonadiabatic limit in the
spin鄄boson model considered here, comparison of the three
mixed quantum鄄classical methods reveals the problem of the
Ehrenfest and SH methods found in the examples presented in
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this section: the critical problem is the treatment of the dynamics
of the coherence terms (Sx and Sy in the Ehrenfest and SH meth-
ods, and 籽12 in the MQCL method). As shown in the MQCL
method, dynamics of this term should be calculated on the aver-
age potential surface for the SB model. However, the Ehrenfest

method describes it on the ensemble averaged potential, and SH
method calculates its propagation by hopping between two sur-
faces. In the special case considered in this paper (weak elec-
tronic coupling, initial nuclear distribution equilibrated on the
donor surface), both methods are applied to calculate the dy-
namics of the coherence term on the donor surface, which leads
to the different rate constant expressions from the MQCL
method. The above findings indicate that the Ehrenfest and SH

Fig.3 The integrand of Eqs.(19), (22), (32) at 300 K as
functions of time for rubrene with all the

modes shown in Fig.1
The inset shows the results with the modes whose frequencies are (a) below

500 cm-1 and (b) above 500 cm-1. solid line: Fermi golden rule result,
dashed line: Ehrenfest or SH result

Fig.1 Individual vibrational frequency 棕j for rubrene and sexithiophene, and their contributions to
the total reorganization energy 姿j

(a) neutral rubrene, (b) cationic rubrene, (c) neutral sexithiophene, (d) cationic sexithiophene;
The total reorganization energies for rubrene and sexithiophene are 1212.3 and 2061.0 cm-1, respectively.

Fig.2 Charge transfer rates as a function of temperature in
nonadiabatic limit

(a) rubrene, (b) sexithiophene; solid line: Fermi golden rule result,
dashed line: Ehrenfest method or SH method; k0=驻2/姿
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methods should be used with caution when high frequency mo-
tions are important in the system鄄bath coupling.

3 Conclusions
In this paper, we have derived the charge transfer rate con-

stants from the Ehrenfest, SH, and MQCL methods in the nona-
diabatic limit. The results are applied to calculate charge transfer
rates in organic semiconductor materials. It is found that the rate
constants from Ehrenfest and SH methods can differ significant-
ly from the correct result. Analysis shows that the dynamics of
the off鄄diagonal terms of the density matrix are not correctly de-
scribed in both methods, and the deviation is more severe when
high frequency modes are involved.
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