This paper is published as part of a PCCP Themed Issue on:

Interfacial Systems Chemistry: Out of the Vacuum, Through the Liquid, Into the Cell

Guest Editors: Professor Armin Göltzhaus (Bielefeld) & Professor Christof Wöll (Karlsruhe)

Editorial

Interfacial systems chemistry: out of the vacuum—through the liquid—into the cell

DOI: [10.1039/c004746p](https://doi.org/10.1039/c004746p)

Perspective

The role of inert surface chemistry in marine biofouling prevention

DOI: [10.1039/c001968m](https://doi.org/10.1039/c001968m)

Communication

Self-assembled monolayers of polar molecules on Au(111) surfaces: distributing the dipoles

DOI: [10.1039/b924238b](https://doi.org/10.1039/b924238b)

Papers

Heterogeneous films of ordered CeO₂/Ni concentric nanostructures for fuel cell applications

DOI: [10.1039/b918587a](https://doi.org/10.1039/b918587a)

Synthesis and characterization of RuO₂/poly(3,4-ethylenedioxythiophene) composite nanotubes for supercapacitors

DOI: [10.1039/b918589p](https://doi.org/10.1039/b918589p)

Bending of purple membranes in dependence on the pH analyzed by AFM and single molecule force spectroscopy

DOI: [10.1039/b919729j](https://doi.org/10.1039/b919729j)

Bifunctional polyacrylamide based polymers for the specific binding of hexahistidine tagged proteins on gold surfaces

DOI: [10.1039/b920713a](https://doi.org/10.1039/b920713a)

Self-assembly of triazatriangulenium-based functional adlayers on Au(111) surfaces

DOI: [10.1039/b922882a](https://doi.org/10.1039/b922882a)

Polymer confinement effects in aligned carbon nanotubes arrays

DOI: [10.1039/b922906j](https://doi.org/10.1039/b922906j)

Relative stability of thiol and selenol based SAMs on Au(111) — exchange experiments

DOI: [10.1039/b923065n](https://doi.org/10.1039/b923065n)

Micron-sized [6,6]-phenyl C61 butyric acid methyl ester crystals grown by dip coating in solvent vapour atmosphere: interfaces for organic photovoltaics

DOI: [10.1039/b923496a](https://doi.org/10.1039/b923496a)

Self-assembly of L-glutamate based aromatic dendrons through the air/water interface: morphology, photodimerization and supramolecular chirality

DOI: [10.1039/b923595g](https://doi.org/10.1039/b923595g)
Self-assembled monolayers of benzylmercaptan and para-cyanobenzylmercaptan on gold: surface infrared spectroscopic characterization
DOI: 10.1039/b923628q

The formation of nitrogen-containing functional groups on carbon nanotube surfaces: a quantitative XPS and TPD study
Shankhamala Kundu, Wei Xia, Wilma Busser, Michael Becker, Diedrich A. Schmidt, Martina Havenith and Martin Muhler, Phys. Chem. Chem. Phys., 2010
DOI: 10.1039/b923651a

Geometric and electronic structure of Pd(4-aminothiophenol/Au(111) metal–molecule–metal contacts: a periodic DFT study
Jan Kučera and Axel Groß, Phys. Chem. Chem. Phys., 2010
DOI: 10.1039/b923700c

Ultrapthin conductive carbon nanomembranes as support films for structural analysis of biological specimens
DOI: 10.1039/b923756a

Microstructured poly(2-oxazoline) bottle-brush brushes on nanocrystalline diamond
Naima A. Hutter, Andreas Reitinger, Ning Zhang, Marin Steenackers, Oliver A. Williams, Jose A. Garrido and Rainer Jordan, Phys. Chem. Chem. Phys., 2010
DOI: 10.1039/b923789p

Model non-equilibrium molecular dynamics simulations of heat transfer from a hot gold surface to an alkylthiolate self-assembled monolayer
Yue Zhang, George L. Barnes, Tianying Yan and William L. Hase, Phys. Chem. Chem. Phys., 2010
DOI: 10.1039/b923858c

Holey nanosheets by patterning with UV/ozone
Christoph T. Nottbohm, Sebastian Wiegmann, André Beyer and Armin Gölpüzhauser, Phys. Chem. Chem. Phys., 2010
DOI: 10.1039/b923863h

Tuning the local frictional and electrostatic responses of nanostructured SrTiO$_3$—surfaces by self-assembled molecular-monolayers
DOI: 10.1039/b924227a

Influence of OH groups on charge transport across organic–organic interfaces: a systematic approach employing an ideal device
Zhi-Hong Wang, Daniel Käfer, Asif Bashir, Jan Götzzen, Alexander Birkner, Gregor Witte and Christof Wöll, Phys. Chem. Chem. Phys., 2010
DOI: 10.1039/b924230a

A combinatorial approach toward fabrication of surface-adsorbed metal nanoparticles for investigation of an enzyme reaction
H. Takei and T. Yamaguchi, Phys. Chem. Chem. Phys., 2010
DOI: 10.1039/b92233m

Structural characterization of self-assembled monolayers of pyridine-terminated thiolates on gold
Jinxuan Liu, Björn Schüpbach, Asif Bashir, Osama Shekhah, Alexei Nefedov, Martin Kind, Andreas Terfort and Christof Wöll, Phys. Chem. Chem. Phys., 2010
DOI: 10.1039/b924246p

Quantification of the adhesion strength of fibroblast cells on ethylene glycol terminated self-assembled monolayers by a microfluidic shear force assay
Christof Christophis, Michael Grunze and Axel Rosenhahn, Phys. Chem. Chem. Phys., 2010
DOI: 10.1039/b924304f

Lipid coated mesoporous silica nanoparticles as photosensitive drug carriers
Yang Yang, Weixing Song, Anhe Wang, Pengli Zhu, Jinbo Fei and Junbai Li, Phys. Chem. Chem. Phys., 2010
DOI: 10.1039/b924370d

On the electronic and geometrical structure of the trans- and cis-isomer of tetra-tert-butyl-azobenzene on Au(111)
Roland Schmidt, Sebastian Hagen, Daniel Brete, Robert Carley, Cornelius Gahl, Jadranka Dokic, Peter Saalfrank, Stefan Hecht, Petra Tegeder and Martin Weinelt, Phys. Chem. Chem. Phys., 2010
DOI: 10.1039/b924409c

Oriented growth of the functionalized metal–organic framework CAU-1 on –OH- and –COOH-terminated self-assembled monolayers
Florian Hinterholzinger, Camilla Scherb, Tim Ahnfeldt, Norbet Stock and Thomas Bein, Phys. Chem. Chem. Phys., 2010
DOI: 10.1039/b924657f

Interfacial coordination interactions studied on cobalt octaethylporphyrin and cobalt tetr phenylporphyrin monolayers on Au(111)
DOI: 10.1039/b924974p

Probing adsorption and aggregation of insulin at a poly(acrylic acid) brush
Florian Evers, Christian Reichhart, Roland Steitz, Metin Tolan and Claus Czeslik, Phys. Chem. Chem. Phys., 2010
DOI: 10.1039/b925134k

Nanocomposite microstructures with tunable mechanical and chemical properties
DOI: 10.1039/c000304m
Is there a Au–S bond dipole in self-assembled monolayers on gold?†

LinJun Wang, ac Gerold M. Rangger, b ZhongYun Ma, c QiKai Li, c Zhigang Shuai, s ac Egbert Zojerab and Georg Heimel d

Received 18th November 2009, Accepted 8th February 2010
First published as an Advance Article on the web 24th February 2010
DOI: 10.1039/b924306m

Self-assembled monolayers (SAMs) of functionalized thiols are widely used in organic (opto)electronic devices to tune the work function, \(\Phi \), of noble-metal electrodes and, thereby, to optimize the barriers for charge-carrier injection. The achievable \(\Phi \) values not only depend on the intrinsic molecular dipole moment of the thiols but, importantly, also on the bond dipole at the Au–S interface. Here, on the basis of extensive density-functional theory calculations, we clarify the ongoing controversy regarding the existence, the magnitude, and the nature of that bond dipole.

The work function, \(\Phi \), of a metal is defined as the energy difference between its Fermi level, \(E_F \), and the energy of an electron at rest directly outside the metal surface, \(E_{\text{vac}} \). Thus, to modify \(\Phi \) by an amount \(\Delta \Phi \), a SAM must introduce a potential energy step between metal and vacuum. To allow for the rational design of molecules that induce a desired \(\Delta \Phi \), the latter is commonly split into two additive components. The first, \(\Delta E_{\text{vac}} \), arises from the molecular ad-layer only and the second, \(\Delta E_{\text{BD}} \), reflects the interfacial charge rearrangements upon molecule–metal bonding. Disregarding atomic-scale lateral inhomogeneities in the SAM, each potential energy step is linked to a corresponding plane-averaged charge (re)distribution, \(\rho(z) \), via the Poisson equation,

\[
\nabla^2 E(z) = \frac{\rho(z)}{\varepsilon_0}
\]

(1)

where \(e \) denotes the (by definition positive) elementary charge and \(\varepsilon_0 \) the vacuum permittivity. As only a net dipole moment perpendicular to the surface leads to a non-vanishing \(\Delta E \), eqn (1) is commonly replaced by the heuristic Helmholtz equation, where two contributions to \(\Delta \Phi \) are regarded as arising from two laterally homogenous dipole layers.1–9

\[
\Delta \Phi = \Delta E_{\text{vac}} + \Delta E_{\text{BD}} = -\frac{en}{\varepsilon_0} \left[\frac{|\mu| \cos(\beta)}{\varepsilon_0(\varepsilon r + \varepsilon_0)} + \mu_{\text{BD}}(n) \right]
\]

(2)

Here, \(n \) denotes the molecular packing density, \(|\mu| \) is the dipole moment of the free molecule, and \(\beta \) is the angle between the dipole axes of the molecules in the SAM and the surface normal. Generally, the depolarization factor \(\varepsilon_{\text{eff}} \) and the bond dipole at the Au–S interface, \(\mu_{\text{BD}} \), depend on the coverage in a non-trivial manner,10 but the same \(n \) (full coverage) is assumed for all SAMs considered here.

For many adsorbates, the conceptual partitioning of \(\Delta \Phi \) into a purely molecular part (first term in eqn (2)) and a bonding-induced part (second term in eqn (2)) is unambiguously defined.2 However, for SAMs formed by thiols, two different partitioning schemes appear in the literature. For the molecular contribution to \(\Delta \Phi \), thiols (i.e., \(\text{R–SH} \) species) are considered in the first1–5 and \(\text{R–S}^* \) radical species in the second.6–9 These correspond to two conceptually different points of view,

\[
\begin{align}
\text{R–SH} + \text{Au} &\rightarrow \text{R–S–Au} + \text{H}_2 & (3a) \\
\text{R–S}^* + \text{Au} &\rightarrow \text{R–S–Au} & (3b)
\end{align}
\]

(3)

where the first regards the bonding of the SAM to the metal as replacing \(\text{S–H} \) bonds with \(\text{S–Au} \) bonds and the second as forming new bonds between \(\text{R–S}^* \) radicals and gold. Naturally, appreciably different molecular dipole moments are found for the saturated and the radical species and, consequently, by virtue of eqn (2), also different \(\Delta E_{\text{vac}} \) values (see ESI†). As, however, the final situation is identical in both approaches, i.e., a thiolate SAM on a gold surface (\(\text{R–S–Au} \)) with one given \(\Delta \Phi \), eqn (2) implies that then also the bonding-induced contribution to the work-function modification, \(\Delta E_{\text{BD}} \), must differ between the two approaches. In density-functional theory (DFT) calculations, the latter is obtained by applying eqn (1) to the plane-averaged charge-density differences, \(\rho_{\text{diff}} \), that are associated with the processes indicated in eqn (3).1–3

\[
\rho_{\text{diff}}^{\text{rad}} = \rho_{\text{sys}}^{\text{rad}} - \rho_{\text{ref}}^{\text{rad}} \rho_{\text{diff}}^{\text{syst}} = \rho_{\text{sys}}^{\text{syst}} - \rho_{\text{ref}}^{\text{syst}} \]

(4)

(4a)

Here, the subscripts sys, \(\text{Au}, \text{rad}, \text{sat}, \text{and} \text{H} \) refer to the entire metal/SAM system, the pristine metal, the free-standing molecular monolayer of radical and \(\text{H} \)-saturated species, and the layer of saturating \(\text{H} \)-atoms, respectively. Experimentally, \(\Delta E_{\text{BD}} \) can be extracted from \(\Delta \Phi \) measurements on a series of molecules with the aid of their calculated dipole moments and reasonable estimates for all other quantities in eqn (2).4–7

Notably, DFT calculations pursuing the saturated approach have found values of \(\Delta E_{\text{BD}} \approx -1.2 \text{ eV} \) for SAMs of biphenylthiols on \(\text{Au(111)} \),1–3 while negligible values (\(\sim 0.01 - 0.08 \text{ eV} \))

This journal is © the Owner Societies 2010

Phys. Chem. Chem. Phys., 2010, 12, 4287–4290 | 4287
have been reported for SAMs of alkythiols following the radical scheme. Even more strikingly, experimental studies on thiolns with an aromatic ring adjacent to the –SH group have reported a ∆UBD of −0.85 eV when relying on μ values calculated for saturated molecules, while a ∆UBD between +0.6 and +1.0 eV has been found using μ values calculated for radicals. Thus, the bond dipole of thiols on gold appears to depend not only on the chemical structure of the molecular backbone but, rather unsatisfactorily, also on the chosen partitioning scheme. It is the purpose of the latter, however, to permit correlating the chemical structure of the SAM-forming molecules with the achievable ∆Φ, thus allowing for the rational design of suitable molecules. Therefore, the question arises which of the two possibilities is better suited to provide a chemically and physically insightful picture of the relevant interfacial processes.

To elucidate this question, we performed slab-type DFT band-structure calculations for a series of functionalized thiols on Au(111) using VASP, the internal-coordinate geometry optimizer GADGET, and XCRYSDEN (for details see ESI†). As shown in Fig. 1a, each molecule is endowed with a strongly polar head-group substitution that either lowers Φ in the case of the electron-donating amino group (–NH2) or increases Φ in the case of the electron-accepting cyano group (–CN), note that the total dipole moments of these molecules are composed of the contributions from the head groups on one side and from the thiol groups on the other side, the latter pointing roughly in the direction of the S–H bonds (vide infra). An in-depth analysis of the electronic properties of the molecules shown in Fig. 1a as well as the corresponding SAMs is provided in ref. 14. For the sake of comparability, the same rectangular p(√3 × 3) unit cell containing two molecules is assumed for all monolayers (Fig. 1b). To individually access all components in eqn (4), separate calculations were performed on the corresponding sub-systems listed there.

As it appears more natural and chemically intuitive (in contrast to R–S2 radicals, the –SH terminated molecules are readily accessible to experiment), the saturated scenario is discussed first. There, when setting up the system for the free-standing molecular monolayer in order to determine ∆EVac in eqn (2) and ρvac in eqn (4a), one is faced with the choice of where to place the hydrogen atom relative to the sulfur (Fig. 1c). Two positions can be identified, where the hydrogen lies in the plane defined by the sulfur and the two nearest carbon atoms. As the S–C bond is inclined to the surface normal, the projection of the local dipole moment around the –SH group onto the surface normal (vide supra), the corresponding plot is shown in Fig. 2.† This indicates that, using the saturated partitioning scheme, ∆UBD also reflects the position of the saturating H-atoms and, thus, the orientation of the S–C bond and the molecular plane with respect to the surface normal (Fig. 1c).

To further test the ability of the saturated approach to provide chemically and physically insightful information, we also examined a different quantity, namely the “left-sided” ionisation potentials (IPs) of the free-standing saturated monolayers, which are defined as the energy difference between its highest occupied π-states (the highest fully delocalized σ-states in the case of C1) and Evac on the thiol side, as the latter obviously differs from Evac above the head-group substituents by ∆Evac. Again, the IPleft values in Table 1 reflect the chemical nature adjacent to the sulfur to some extent, i.e., larger values are observed for more polarisable backbones. Notably, the value for the alkyl backbone C1 is non-zero. Also listed are the ∆UBD values for hydrogen position II. Not only are they markedly different, but closer inspection of Table 1 reveals that the difference to the H-position I values increases essentially linearly with the height difference, ∆z1,2, between the two saturating hydrogens in the two positions (Fig. 1c), i.e., with the projection of the local dipole moment around the –SH group onto the surface normal (vide supra); the corresponding plot is shown in Fig. 2.† This indicates that, using the saturated partitioning scheme, ∆UBD also reflects the position of the saturating H-atoms and, thus, the orientation of the S–C bond and the molecular plane with respect to the surface normal (Fig. 1c).
of the molecular backbones, i.e., lower values are found for structures with a more extended conjugation. Similarly to Δz_{C1}, the height difference between the saturating hydrogen atoms in position I and II; the dashed line is a linear fit through the origin.

Table 1 DFT-calculated vertical distance, Δz_{C1}, between the saturating hydrogen atoms in positions I and II; left-sided ionisation potential, IP_{left}, energy perturbation of the highest occupied delocalized orbitals upon metal–molecule bonding, E_{corr}, and potential energy step due to the bond dipole, ΔE_{BD}, for hydrogen position I as well as ΔE_{BD} for hydrogen position II obtained for the saturated partitioning scheme

<table>
<thead>
<tr>
<th>System</th>
<th>Δz_{C1}/Å</th>
<th>IP_{left}/eV</th>
<th>E_{corr}/eV</th>
<th>ΔE_{BD}/eV</th>
<th>ΔE_{BD}/eV</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1–NH$_2$</td>
<td>1.919</td>
<td>7.74</td>
<td>0.03</td>
<td>−1.27</td>
<td>0.16</td>
</tr>
<tr>
<td>C1–CN</td>
<td>1.880</td>
<td>8.17</td>
<td>−0.01</td>
<td>−1.00</td>
<td>0.13</td>
</tr>
<tr>
<td>C2–NH$_2$</td>
<td>0.675</td>
<td>5.03</td>
<td>0.14</td>
<td>−1.14</td>
<td>−0.69</td>
</tr>
<tr>
<td>C2–CN</td>
<td>0.515</td>
<td>5.13</td>
<td>0.17</td>
<td>−1.20</td>
<td>−0.85</td>
</tr>
<tr>
<td>C3–NH$_2$</td>
<td>1.894</td>
<td>3.89</td>
<td>0.16</td>
<td>−1.87</td>
<td>−0.78</td>
</tr>
<tr>
<td>C3–CN</td>
<td>2.067</td>
<td>3.74</td>
<td>0.16</td>
<td>−2.06</td>
<td>−0.88</td>
</tr>
<tr>
<td>T1–NH$_2$</td>
<td>0.821</td>
<td>4.26</td>
<td>0.14</td>
<td>−1.54</td>
<td>−1.01</td>
</tr>
<tr>
<td>T1–CN</td>
<td>0.788</td>
<td>4.30</td>
<td>0.14</td>
<td>−1.57</td>
<td>−1.07</td>
</tr>
<tr>
<td>T2–NH$_2$</td>
<td>1.269</td>
<td>4.04</td>
<td>0.12</td>
<td>−1.70</td>
<td>−0.94</td>
</tr>
<tr>
<td>T2–CN</td>
<td>1.266</td>
<td>4.10</td>
<td>0.13</td>
<td>−1.71</td>
<td>−0.95</td>
</tr>
<tr>
<td>T3–NH$_2$</td>
<td>1.173</td>
<td>3.99</td>
<td>0.13</td>
<td>−1.70</td>
<td>−0.98</td>
</tr>
<tr>
<td>T3–CN</td>
<td>1.160</td>
<td>4.01</td>
<td>0.13</td>
<td>−1.72</td>
<td>−1.02</td>
</tr>
</tbody>
</table>

Table 2 DFT-calculated potential energy step due to the bond dipole, ΔE_{BD}, left-sided ionisation potential, IP_{left}, and energy perturbation of the highest occupied delocalized orbitals upon metal–molecule bonding, E_{corr}, obtained for the radical partitioning scheme

<table>
<thead>
<tr>
<th>System</th>
<th>ΔE_{BD}/eV</th>
<th>IP_{left}/eV</th>
<th>E_{corr}/eV</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1–NH$_2$</td>
<td>−0.04</td>
<td>8.95</td>
<td>−0.02</td>
</tr>
<tr>
<td>C1–CN</td>
<td>−0.04</td>
<td>9.07</td>
<td>−0.09</td>
</tr>
<tr>
<td>C2–NH$_2$</td>
<td>1.11</td>
<td>6.07</td>
<td>−1.11</td>
</tr>
<tr>
<td>C2–CN</td>
<td>0.96</td>
<td>6.08</td>
<td>−1.08</td>
</tr>
<tr>
<td>C3–NH$_2$</td>
<td>1.33</td>
<td>6.11</td>
<td>−0.86</td>
</tr>
<tr>
<td>C3–CN</td>
<td>1.28</td>
<td>6.14</td>
<td>−0.83</td>
</tr>
<tr>
<td>T1–NH$_2$</td>
<td>1.28</td>
<td>5.89</td>
<td>−1.11</td>
</tr>
<tr>
<td>T1–CN</td>
<td>1.19</td>
<td>5.88</td>
<td>−1.07</td>
</tr>
<tr>
<td>T2–NH$_2$</td>
<td>1.22</td>
<td>5.81</td>
<td>−1.07</td>
</tr>
<tr>
<td>T2–CN</td>
<td>1.17</td>
<td>5.81</td>
<td>−1.08</td>
</tr>
<tr>
<td>T3–NH$_2$</td>
<td>1.27</td>
<td>5.89</td>
<td>−0.99</td>
</tr>
<tr>
<td>T3–CN</td>
<td>1.23</td>
<td>5.89</td>
<td>−0.99</td>
</tr>
</tbody>
</table>

SAM formation, one obviously needs not be concerned with the position of a saturating hydrogen atom on the sulfur. The results obtained with the radical partitioning scheme are listed in Table 2. In agreement with previous studies following this approach, a vanishing ΔE_{BD} is found for the alkyl backbone C1 and, for all other molecular structures, ΔE_{BD} changes sign compared to the saturated scheme (Table 1); a potential dependence on the orientation of the S–C bond is hard to assess. Notably, the IP_{left} values in the radical case (Table 2) all lie within the narrow range of 5.8 – 6.1 eV (cf. ref. 8); the exception is again C1 due to the different nature (σ-orbital vs. π-orbital) of the highest occupied delocalized states. Additionally, the E_{corr} values are on the order of 1 eV, yet again with the exception of C1 (vide infra). This leads to the conclusions that, in the radical partitioning scheme, chemical information on the nature of the backbone is largely lost and that the electronic structure of the free-standing radical layer is significantly perturbed upon bonding to the metal.

The reason for these observations is that the radical character of the –S* termination dominates the electronic structure of the free-standing monolayer on the docking-group side and, consequently, also the interfacial charge redistributions upon metal–molecule bond formation. Removing the hydrogen from the sulfur in the thiol and, thus, converting the closed-shell molecule into a radical, induces major charge rearrangements on that side of the molecule. The latter can be expressed as $(\rho_{\text{rad}} + \rho_{\text{th}}) - \rho_{\text{sat}}$ and are shown in the left panels of Fig. 3. For all conjugated systems (C2–T3), the charge redistributions resulting from hydrogen removal reach far onto the molecular backbones, as the sulfur is strongly coupled to their π-electron system. A qualitatively different behaviour is observed in the case of the alkylthiol (C1), where both the π-system and the radical character are strongly localized on the sulfur alone and, therefore, the delocalized σ-states are hardly affected by radical formation. When the bonds between radicals and gold are formed, i.e., when charges are shifted according to eqn (4b), the molecule is essentially converted back to a closed-shell species and the aforementioned charge redistributions are largely reversed in the spatial region of the SAM (left panels in Fig. 3), but not quite. The actual chemical and physical information regarding the Au–S bonding lies hidden in the difference between the processes of removing the hydrogen atoms from the sulfur and “adding” the gold surface.
instead. Exactly this difference (right panels in Fig. 3), which actually corresponds to ρ_{diff} in the saturated partitioning scheme (eqn (4a)), is obscured in the radical approach. To summarize, we have identified and discussed two distinctly different ways of defining the Au–S bond dipole in thiol SAMs on Au(111), the saturated and the radical scheme. With a well-defined choice for the positions of the saturating hydrogen atoms on the sulfur, the former conserves information on the chemical structure of the thiols, reflects the orientation of the S–C bond, and provides revealing insights into the interfacial charge rearrangements that occur upon metal–molecule bonding. In particular, a considerable negative ΔE_{BD} is found for a wide range of molecules, including alkythiols. On the other hand, when considering unsaturated R–S$^+$ species as the origin of the molecular contribution to the work-function modification, chemical information on the SAM electronic structure is largely lost and the relevant bonding-related charge redistributions at the metal–molecule interface are not accessible, which clearly renders this second approach less appealing.

This work was supported by the Ministry of Science and Technology of China through the 973 program (Grants 2006CB806200 and 2006CB932100), by the FWF through project P20972-N20, and by the DFG through the Sfb448 “Mesoscopically Organized Composites”.

Notes and references

† As there are two inequivalent molecules per unit cell (Fig. 1b), the average $\Delta z_{1,2}$ values are reported.