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O
ver the past twenty years, tremen-
dous efforts have been devoted to
searching new carbon allotropes,

and many types of carbon forms such
as fullerene,1 carbon nanotube,2 and
graphene,3 have been added to the
family of carbon. One new carbon form,
graphyne, has been first theoretically
proposed,4 which consists of planar molec-
ular sheets containing only sp and sp2 car-
bon atoms. Among various graphyne
structures, graphdiyne has been targeted
by Haley, Brand, and Pak5 in 1997 and since
then great efforts have been devoted to the
synthesis of monomeric and oligomeric
substructures toward constructing graph-
diyne.6�8 Only until very recently, large area
(∼ 3.6 cm2) of graphdiyne film has been
successfully prepared via cross-linking reac-
tion using hexaethynylbenzene on top of
copper surface,9 which has been demon-
strated to exhibit good semiconducting
properties. Nevertheless, single sheet of
graphdiyne is still not available, which is a
highly challenging task.
Graphdiyne is one of the most “syntheti-

cally approachable” allotropes10 containing
two acetylenic (diacetylenic) linkages be-
tween carbon hexagons. Graphdiyne has
been predicted to exhibit fascinating prop-
erties including high third-order nonlinear
optical susceptibility, high fluorescence ef-
ficiency, extreme hardness, high thermal
resistance, conductivity or superconductivity,
and through-sheet transport of ions.4,10�15

Graphdiyne is also predicted to be the most
stable carbon network containing diacety-
lenic linkages.16�19 In this work, we investi-
gate the electronic structure and the charge
transport properties through first principles
calculations, especially for predicting the
charge mobility for the graphdiyne sheet
and for its various nanoribbons.

Charge transport properties in these new
carbon allotropematerials have become the
center of interests, because of their unique
physical, chemical, and structural properties
and potential for use in next generation
electronic devices.20�22 Carrier mobility is
the central issue for microelectronic semi-
conducting materials. The single-wall car-
bon nanotubes and graphene nanoriboons
have been demonstrated to possess charge
mobility as high as 7.9� 104 cm2/(V s)23 and
2�25 � 104 cm2/(V s)24�30 at room tem-
perature, respectively. As a new type of
carbon allotrope material, both theoretical
and experimental studies have indicated
that graphdiyne is semiconductor.9,12 The
potential application of graphdiyne in the
future nanoelectronics is of great interest. It
is the primary motivation of this work to
predict the intrinsic carrier mobility for an
ultrapure single layered graphdiyne as well
as its nanoribbons.

RESULTS AND DISCUSSION

The graphdiyne sheet structure is shown
in Figure 1, where the unit cell is drawn with
dashed line. The VASP optimized lattice
constant is found to be a0 = 9.48 Å, in good
agreement with the previous value of 9.44 Å
calculated by Narita et al.13 with the local
density approximation. The energy band
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ABSTRACT Using density functional theory coupled with Boltzmann transport equation with

relaxation time approximation, we investigate the electronic structure and predict the charge

mobility for a new carbon allotrope, the graphdiyne for both the sheet and nanoribbons. It is shown

that the graphdiyne sheet is a semiconductor with a band gap of 0.46 eV. The calculated in-plane

intrinsic electron mobility can reach the order of 105 cm2/(V s) at room temperature, while the hole

mobility is about an order of magnitude lower.
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structure calculated for a single graphdiyne sheet is
shown in Figure 2. The band dispersion arises mostly
from the overlap of the carbon 2pz orbitals. It is seen
that the graphdiyne is a semiconductor with a band
gap of 0.46 eV at the Γ-point. It should be noted that
the band gap of semiconducting materials is under-
estimated by the density functional theory (DFT) cal-
culations that do not include the self-energy from
many-electron interactions. Since our deformation po-
tential (DP) method only considered the shifts of
valence band (VB) and conduction band (CB), the
actual value of band gap does not affect appreciably
the transport property calculations, but the curvature
of the bands, whichmay not be correctly characterized
by DFT, can affect the effective mass and mobility.
In the charge transport calculation, we build a super-

cell along two vertical directions a and b for graph-
diyne sheet which allows for more intuitive explana-
tion for transport property, as shown in Figure 1.
There are 36 atoms in this rectangular super cell. Lattice
constants are a0 = 16.42 Å and b0 = 9.48 Å for the
supercell at equilibrium geometry. To calculate the
deformation potential constant E1 and the stretching
modulus Cβ (here we use β for generic index), we dilate
the super cell of graphidyne uniformly along the
direction a or b, and calculate the band structures
at different degrees of dilation in the range of (0.5%.
By fitting the curve of the total energy E of the super
cell with respect to dilation Δl/l0 as (E� E0)/S0 = Cβ(Δl/

l0)
2/2, we can evaluate the elastic constant of the

sheet along the transport direction β. Here S0 and E0
are area and total energy of the super cell at the
optimized structure. Δl is the deformation of lattice
constant along the direction β and l0 is its value at
equilibrium geometry, a0 or b0. The DP constant is
defined as E1=ΔE/(Δl/l0), whereΔE is energy shift of the
band edge position with respect to the lattice dilation
Δl/l0 along the direction β of the external field. For low
carrier concentration, the charges are near the band
edge. So we take the energy shift at the upper edge of
the valence band for hole and at the lower edge of the
conduction band for electron. As shown in Figure 2,
both the conduction band and the valence band of the
graphdiyne-sheet are quasi-degenerate along the Γ-K
direction. This quasi-degeneracy raise the interband-
scattering probability, which is not accounted for by
the deformation potential theory presented here.
However, we can tell from eqs (A31) and (A32) of
Bardeen and Shockley's work31 that the interband
transition matrix element at small momentum P
vanishes to the zero-th order approximation since
the wave functions of the degenerate bands are
orthogonal to each other. So the interband-scattering
probability is a small quantity in camparison with the
intraband-scattering probability and neglection of it
should have minor impact on the relaxation times. If
not considering interband-scattering, the degenaracy
will only increase the density of states, but not alter the
mobilities (see eq 2 below in METHODS).
In Figure 3a, we present the calculated band edge

positions of the VB and CB at the Γ-point as a function
of the dilation, along the direction a. Around the
equilibrium structure, the band edge position changes
linearly with the lattice deformation, with the slope
being the DP constant E1. In Figure 3b, we present the
total energy of super cell for graphdiyne as a function
of lattice dilation along both a and b directions. With
parabola fittings, the corresponding stretching mod-
ulus can be calculated.
Table 1 shows all the calculated DP constants, the

stretching modulus, the carrier mobilities and the

Figure 2. Band structure and density of states for single
graphdiyne sheet obtained from DFT calculations. The
Brillouin zone is also shown.

Figure 1. Schematic representation of a single graphdiyne
sheet. The lattice vectors are given by aB1 = a0xB and aB2 =
a0(�xB2/ þ (31/2yB)/2). The rhombus drawn with dashed line
represents the primitive cell. The super cell used for trans-
port calculations (dashed rectangle) is also shown, which
contains 36 carbon atoms.
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relaxation times for both hole (valence band) and
electron (conduction band). The mobility and relaxa-
tion time are calculated according to eq 2 and eq 3
given in METHODS. We can find that the in-plane
mobilities along direction a and b are close to each
other in Table 1. It is found that the intrinsic electron
mobility can reach 2 � 105 cm2/(V s), while the hole
mobility is close to 2� 104 cm2/(V s), which is an order
ofmagnitude lower than themobility of electron at the
room temperature (RT). The acoustic phonon scatter-
ing relaxation times are calculated to be 2 and 20 ps for
hole and electron, respectively, which are close to the
value for graphene.32,33 It is clearly seen from Table 1
that the deformation potential E1 value for hole is three
times as large as that for electron. This results in a
difference of ∼1 order of magnitude in the mobilities
of electron and hole by virtue of eq 2. The DP constant
is a characterization of the coupling strength of the
electron or hole to the acoustic phonon. The fact that

the hole is more strongly scattered by the acoustic
phonon than the electron can be understood by
examining the frontier molecular orbitals responsi-
ble for transport. The band shift upon stretching
comes from the site energy change, so if the orbital
has more nodes in the direction of dilation, its site
energy will be more prone to change upon dilation.
The Γ-point highest occupied molecular orbital
(HOMO) and lowest unoccupied molecular orbital
(LUMO) are shown in Figure 4. Since the HOMO and
LUMO are both degenerate, a pair of orbitals for
either of them are plotted in Figure 4. The HOMO
exhibits antibonding character between carbon
hexagons and diacetylenic linkages therefore it has
more nodes in either direction a or direction b,
whereas the LUMO exhibits bonding character be-
tween carbon hexagons and diacetylenic linkages so
it has less nodes in the directions of dilation, which
makes the hole more prone to acoustic phonon
scattering than the electron. The degenerate HOMO
and LUMO at Γ�point and corresponding energies
before and after dilation have been provided as
Supporting Information.
We next examined the graphdiyne nanoribbons

(GDNRs), which are important in nanoelectronic engi-
neering. There are twomajor ways to cut the sheet into
ribbons, as shown in Figure 5a, namely, cutting the
graphdiyne along the direction of the nearest neighbor
carbon hexagons (Af B) resulting in divan-like edged
GDNR (DGDNR, Figure 5a-I), or cutting the sheet along
the direction of the next nearest neighbor carbon
hexagons (A f C), resulting in a zigzag-like edge of
GDNR (ZGDNR, Figure 5a-II). Furthermore, there are
two different ZGDNRs: the uniform width (Figure 5a-II)
and nonuniform width (Figure 5a-III) by cutting at
different sites.
In the present work, we examine five types of

nanoribbons, as shown in Figure 5b�f. D1 and D2 are
DGDNRs with two and three carbon hexagons in edge,
respectively. Z1 and Z2 are ZGDNR with two and three
carbon hexagons in edge, respectively, and Z3 is
ZGDNR with two carbon hexagons at the narrow site
and three hexagons at the broad site in edge. In order
to avoid dangling bond at edge, the carbon atoms are
passivated with hydrogen atoms at both the divan
and zigzag edges for all the five types of GDRNs.
The widths of the GDNRs are found to be 12.5 Å, 20.7
Å, 19.2 Å and 28.6 Å for D1, D2, Z1 and Z2, respectively,
and the narrowwidth of Z3 is 19.2 Å and thebroadwidth
is 28.6 Å.
With the same theoretical methods employed for

single graphdiyne sheet, we also calculated band
structures and carrier mobilities of the five GDNRs.
The band structures for GDNRs obtained from DFT
calculations are shown in Figure 6. From the band
structures, all GDNRs are predicted to be semiconductor,
in which the smallest band gap (D2) has a value of

TABLE 1. Deformation Potential E1, Elastic Constant C,

Carrier Mobility μ, and the Averaged Value of Scattering

Relaxation Time τ at 300 K for Electrons and Holes in a

Single Graphdiyne Sheet

carrier type E1 (eV) C (J/m2) μ (104cm2/(V s)) τ (ps)

ea 2.09 158.57 20.81 19.11
ha 6.30 158.57 1.97 1.94
eb 2.19 144.90 17.22 15.87
hb 6.11 144.90 1.91 1.88

a The stretching direction a. b The stretching direction b.

Figure 3. (a) The band edge positions of VB and CB with
respect to the lattice dilation Δl/l0 along the a direction for
the graphdiyne sheet. Solid lines represent the linear fit,
which defines DP constant. (b) The total energy of a unit cell
as a function of lattice deformation along the a and b
directions. Solid lines are the parabola fittings, which give
elastic constant.
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∼0.8 eV at the Γ-point, which can be a useful feature for
employing the GDNRs as semiconducting channels in
FETs.

The calculated DP values for GDNRs are presented in
Figure 7a. It is noted that E1 for the hole is larger than E1
for the electron for all GDNRs, same as that found for
the graphdiyne sheet. The same antibonding feature
between carbon hexagons and diacetylenic linkages
has been found for the HOMO, whereas the bonding
feature between hexagons and diacetylenic linkages is
found for the LUMO (Figure 8). So the coupling
strength between the hole and the acoustic phonon
is larger than that between the electron and the
acoustic phonon. The RT carrier mobilities for GDNRs
calculated from eq 1 are also plotted in Figure 7b. It is
found that the intrinsic electron mobility can reach the
order of 104 cm2/(V s), and significantly larger than that
of the hole mobility. It is also clearly seen that the
charge mobility increases with the width within the
same class GDNRs, and the DGDNRs is more favorable
than the ZGDNRs for the electron transport. It is noted
that for two-dimensional graphdiyne sheet charge
carrier transport is almost isotropic. In contrast for
one-dimensional GDNRs, electronic confinement be-
comes dominant, so upon cutting the sheet into
ribbons, transport behaviors vary significantly and
depend strongly on the direction of cutting. Figure 8
shows that the LUMO for D1 is much more delocalized
in the direction of ribbon axis than that for Z1, so that
the electronmobility for the former ismuch larger than
the latter.

Figure 4. Γ-point degenerate HOMO and LUMO for the graphdiyne sheet. Note the number of nodes for the HOMO is more
than that for the LUMO in either direction, which leads to the hole more strongly scattered by the acoustic phonon than the
electron.

Figure 5. (a) Schematic representation of three graphdiyne
nanoribbons building blocks: (I) a divan-like edged GDNR,
(II) a zigzag-like edged GDNR with uniform width, (III) a
zigzag GDNR with alternating width. Structures b and c are
divan GDNRs with two and three carbon hexagons in width,
respectively. Structures d and e are zigzag GDNRs with two
and three carbon hexagons in width, respectively. Structure
f is zigzag GDNR with two carbon hexagons at the narrow
site and three at the broad site in width.
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To better understand the charge transport behaviors
of GDNRS, we also employed the effective mass ap-
proximation in combination with the DP theory. With
the parabolic approximation for the band structure
of GDNRs, we can write the dispersion relation for
band i as εi(k) = ε0iþ (p2/2mi*)(k� k0)

2, where ε0i is the
bandminimum,mi* ismh*, the effectivemass of hole, or
me*, the effective mass of electron, and k0 is the value
of wave vector at the top of VB or at the bottom of CB.
The use of an analytical parabolic expression, for the
edge of the VB and CB facilitates the calculation of the
charge injection effects. In this sense, the effective
mass is simply associated with the parabolic fitting of
the dispersion relation as m*=p2[∂2ε(k)/∂k2]�1. Under
the effective mass approximation and the electron-
acoustic phonon scattering mechanism, Bardeen and
Shockley31 derived an analytical expression for the
intrinsic carrier mobility, and Beleznay et al.34 have
reformulated for one-dimensional case, which was

employed to study the charge transport in carbon
nanotubes35 and graphene nanoribbons:32

μ ¼ eτ

jm�j ¼
ep2C

(2πkBT)
1=2jm�j3=2E12

(1)

where τ is the scattering relaxation time, C = a0(∂
2E/

∂a2)|a=a0 is the stretchingmodulus of one-dimensional

system, a0 is the lattice constant. The calculated

stretching modulus for GDNRs are shown in

Figure 7c. It is interesting to note that the stretching

modulus slightly increases with the width in the same

class of GDNRs (DGDRNs or ZGDNRs). And the stretch-

ing modulus of DGDNR is larger than that of ZGDNR

with the same width. For instance, comparing D2 and

Z1, their widths are close to each other, their stretch-

ing modulus differ by a factor of almost two. From the

shape of the band structures shown in Figure 6, we

can fit two curves the energy ε(k) versus k points for

Figure 6. Band structures of GDNRs including two divan-like edgedGDNRsD1 andD2 and three zigzag-like edgedGDNRs Z1,
Z2, and Z3. The structures of these GDNRs are given in Figure 5b�f, with D2 wider in edge than D1 and Z2 wider than Z1. Z3
has an edge width alternating between Z1 and Z2.

Figure 7. (a) DP constants for holes and electrons. (b) charge mobility for holes μh and electrons μe. (c) stretching modulus C.
(d) effective masses |mh*| and |me*| for five GDNRs D1, D2, Z1, Z2, and Z3.
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the top of VB and bottomof the CB nearΓ-point, sowe

get the effective mass mh* and me* for hole and

electron, respectively as shown in Figure 7d. We find

that the effective masses of DGNRs are smaller than

those of ZGNRs, suggesting that DGNRs are better for

charge carrier transport than ZGNRs.
We then calculated the chargemobility for GDNRs at

RT based on eq 1. All the calculated results are shown in
Table 2.We find that the results obtained fromeffective
mass approximation are in good agreementwith those
from the Boltzmann transport theory. For instance, for
D1, the electron mobility calculated from the Boltzmann
method is 1.859 � 104 cm2/(V s), compared well with
1.058� 104 cm2/(V s) of effective mass approximation.
In Table 2, we can find that the carrier mobility has

manifested three characteristics for GDNRs: (i) the
mobility increases slightly with the width of the same
class GDNRs; (ii) the mobility of DGDNRs is larger than
that of the ZGDNRs, especially for electrons, when the

width of ribbons is similar, and (iii) the electronmobility
is larger than that for hole in all GDNRs. From the details
in Table 2, we found the stretching modulus C in-
creases slightly with the width of the same class of
GDNRs, which results in the behavior (i) mentioned
above. For instance, D2 is wider than D1, so the
stretching modulus of D2 is larger than that of D1,
which causes the mobility of D2 larger than that of D1.
For zigzag-type nanoribbons, the width of Z1, Z2, and
Z3 is in the order of Z1 < Z3 < Z2, so is themagnitude of
stretchingmodulus. In addition, the effectivemass is in
the opposite order, Z1 > Z3 > Z2. According to eq 1, the
mobility is proportional to the stretching modulus C

and inversely proportional to the effectivemass |m*|3/2,
so the mobility of zigzag-type nanoribbons increases
with the width of the nanoribbons. Table 2 also shows
that the effective masses of DGDNRs are about 0.08m0

(wherem0 is the free electron mass), and the electrons
and holes possess almost the samemass, which is close
to the result of graphdiyne sheet, 0.073 m0 calculated
by Narita et al.13 While for ZGDNRs, the effective
masses are significantly larger than those of DGDNRs,
which are in the range of 0.15�0.28m0, with electrons
being slightly larger than holes. This difference in
effective masses finally leads to the electron mobilities
of DGDNRs 1 order magnitude larger than those of
ZGDNRs. The values of DP constants for electron and
hole, which represent the scattering of a hole or
electron from the acoustic phonon, are also shown in
Table 2. It is found that E1 for hole is larger than that for
electron for each system, which is about three times as
much as for DGDNRs and twice as that for ZGDNRs.
Since carrier mobility is inversely proportional to the
square of DP constant, we find that the electron
mobility is approximately 1 order of magnitude larger
than that of hole for each DGDNR, while for each

Figure 8. Γ-point HOMO and LUMO for GDNRs D1 and Z1. Note that for both D1 and Z1, the LUMO ismore extended than the
HOMO in the direction of cutting, which leads to larger electronmobility than the hole. Also, the LUMO for D1 exhibits much
more delocalized character along the ribbon axis than that for Z1, which can qualitatively explain the fact that the electron
mobility for D1 is larger than Z1.

TABLE 2. Calculated Band Gap, Effective Mass (mh* and

me*), DP Constants for VB and CB (Ev and Ec), Stretching

ModulusC, andCarrierMobilityμ at 300K for fiveGDNRsa

D1 D2 Z1 Z2 Z3

band gap 0.954 0.817 1.205 0.895 1.015
mh*(m0) 0.086 0.087 0.216 0.149 0.174
me*(m0) 0.081 0.086 0.281 0.174 0.207
Ev(eV) 7.406 6.790 4.386 4.786 4.776
Ee(eV) 2.006 1.730 1.972 2.000 2.054
C(1010 eV/cm) 1.244 1.864 1.035 1.787 1.420
μh(10

3 cm2/(V s)) 1.696 2.088 0.755 1.815 1.194
μe(10

3 cm2/(V s)) 18.590 34.241 2.692 9.127 5.329
μh*(10

3 cm2/(V s)) 0.711 1.253 0.426 1.073 0.679
μe*(10

3 cm2/(V s)) 10.580 19.731 1.418 5.015 2.829

a μh and μe are calculated from eq 2, while μh* and me* are calculated from eq 1
under the effective mass approximation.
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ZGDNR, the electronmobility is about four times larger
than that of hole. As for the graphdiyne sheet, holes are
more strongly scattered by the acoustic phonon than
electrons in GDNRs, which can be understood by the
bonding character of HOMO and LUMO responsible for
transport.

CONCLUSIONS

In conclusion, we have calculated the intrinsic
charge carrier mobility of the graphdiyne sheet and
GDNRs scattered by the longitudinal acoustic phonon,

using first-principles density functional theory and the
Boltzmann transport equation with the relaxation time
approximation. The numerical results indicate that the
electron mobility can reach 2 � 105 cm2/(V s) at room
temperature for single graphdiyne sheet, while the hole
mobility is an order of magnitude lower. The room
temperature electron mobility of GDNRs can also reach
104 cm2/(V s), and significantly larger than that of the hole
mobility.Wealso found that the chargemobility increases
with the width in GDNRs, and the divan-edged GDNRs
have larger mobility than the zigzag edged GDNRs.

METHODS
Following the argument of Shockley and Bardeen,31 the

dominant scattering of a thermal electron or hole arises mostly
from the acoustic phonons, since the electron coherence length
is close to the acoustic phonon wavelength and much longer
than the bond length. This is expected to be the case for
graphdiyne sheet. Earlier, we have shown that in graphene
nanoribbons, the acoustic phononmechanism canwell account
for the charge transport behavior,32 where a deformation
potential theory was used to calculate the scattering relaxation
time with the Boltzmann transport equation. Here, we expect
the same acoustic phonon scattering mechanism could be
appropriately applied because of the covalently bonded con-
jugated structure in graphdiyne.
In the present work, the electronic structures are calculated

using first-principles density functionalmethods and the charge
mobility is evaluated based on the Boltzmann transport equa-
tion within the DP theory for both single-layer graphdiynes and
its nanoribbons. Geometry optimization and the band structure
calculations were carried out using density-functional theory as
implemented in Vienna ab initio simulation package
(VASP)36�39 with a projector-augmented-wave method.40 The
generalized gradient approximation of Perdew-Burke-Ernzer-
hof exchange correlation functional was used,41 and the kinetic
energy cutoffwas chosen to be 500 eV. The optimizations using
constrained unit-cell parameters are done until all the atomic
forces are less than 0.01 eV/Å, and the convergence criterion of
the total energy is 10�5 eV in the self-consistent field iteration.
The supercell is large enough to ensure that the vacuum space is
at least 20 Å.
Within the Boltzmann transport method, the carrier mobility

μ in the relaxation time approximation can be expressed as42,43

μe(h)R ¼ e

kBT

∑
i∈CB(VB)

Z
τR(i,

F
k )v2R(i,

F
k )exp -

εi(
F
k )

kBT

" #
dFk

∑
i∈CB(VB)

Z
exp -

εi(
F
k )

kBT

" #
dFk

(2)

where R denotes the direction of external field and the minus
(plus) sign is for electron (hole). εi(kB) and vR(i,kB) are band energy
and the R component of group velocity at kB state of the ith
band, respectively. The summation of bandwas carried out over
VB for hole and CB for electron. Furthermore, the integral of kB
states is over the first Brillouin zone (BZ).
To obtain the mobility, there are three key quantities to be

determined, namely, εi(kB), vR(i,kB) and τR(i,kB). In this work, the
band energy εi(kB) was calculated by density functional theory.
The group velocity of electron and hole carriers can be obtained
from the gradient of the band energy εi(kB) in kB-space, v(i,kB) =
rεi(kB)/p. In our band energy calculations, the kB-mesh is chosen
as 64 � 64 � 1 for the two-dimensional sheet, which is fine
enough to give converged relaxation time and mobility. The
relaxation time τR(i,kB) is calculated by the collision term in the
Boltzmann method,44 and within the deformation potential

formalism, it can be written as

1

τR(i,
F
k )

¼ kBT
2πE21
pCβ ∑

k0∈BZ
1 �

F
vR(

F
k

0
)

F
vR(

F
k )

2
4

3
5δ[ε(Fk 0) � ε(Fk )]

8<
:

9=
; (3)

Here the delta function denotes that the scattering process is
elastic and occurs between the band states with the same
band index. E1 is the DP constant of the i-th band, and Cβ is
the elastic constant along the direction β. In principle,
different scattering channels can be added in the following
way:

1
τ
¼ 1

τac
þ 1
τop

þ 1
τimp

þ ... (4)

where ac, op, and imp denote acoustic, optical phonons, and
impurity respectively. Here, we only consider the acoustic
phonon scattering.
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