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1. Introduction

Motivated by the peculiar behavior of 
electronic structure with Dirac cone in 
graphene,[1–4] the class of 2D materials 
have received intensive interest in recent 
years.[5] The group IV elemental ana-
logues of graphene, including silicene,[6] 
germanene,[7] and stanene,[8–11] are prom-
ising alternatives going beyond graphene 
owing to their outstanding electronic prop-
erties. Molecular beam epitaxy technique 
facilitates the materials fabrications.[6,7,11] 
Among these group IV elemental 2D 
sheets, stanene draws particular atten-
tion since it has been predicted to be a 
topological insulator with large band gap 
theoretically,[12–15] arousing interests in dis-
sipationless electronics. Moreover, stanene 
also shows enhanced thermoelectric per-
formance,[16,17] near-room-temperature 
quantum anomalous effect,[18] and topolog-
ical superconductivity.[19,20] For these appli-
cations, the carrier transport lies in the 
center of electronic processes. Electron–

phonon (el–ph) couplings play an essential role in determining 
the intrinsic transport properties. For evaluating the intrinsic 
carrier mobility of 2D materials, Long et al.[21,22] have first 
applied the deformation potential approximation (DPA) pro-
posed by Shockley and Bardeen[23] as a first-principles method, 
where only the scattering by longitudinal acoustic (LA) phonons 
are taken into account. This approach is conceptually simple 
but has been extremely successful as has been widely applied 
in calculating the intrinsic carrier mobility of 2D sheets or 
nanoribbons, such as graphene,[24–28] silicene,[29] germanene,[30] 
graphdiyne,[22,24] α-graphyne,[31] transition metal dichalcogenide 
(TMD),[32] phosphorene,[33,34] as well as perovskites.[35]

DPA can overestimate the intrinsic room-temperature 
mobility because it only considers the longitudinal acoustic 
phonon scattering process. Taking the case of silicene 
as an example, DPA predicts the intrinsic mobility to be 
2 × 105 cm2 V−1 s−1.[30] By contrast, when electron scatterings 
with all branches of phonons were accounted by using the 
density functional perturbation theory (DFPT), the mobility of 
silicene becomes 2100 cm2 V−1 s−1,[36] or even smaller value is 
also reported (1200[37] and 750 cm2 V−1 s−1[38]). This comes from 
the fact that the reduced symmetry of silicene (D3d) compared 
to graphene (D6h) causes additional scattering processes with 
phonons other than LA.[38,39]

The intrinsic charge transport of stanene is investigated by using density 
functional theory and density functional perturbation theory coupled with 
Boltzmann transport equations at the first-principles level. The Wannier 
interpolation scheme is applied to calculate the charge carrier scatterings 
with all branches of phonons considering dispersion for the whole range of 
the first Brillouin zone. The intrinsic electron and hole mobilities are calcu-
lated to be (2–3) × 103 cm2 V−1 s−1 at 300 K. It is found that the intervalley 
scatterings from the out-of-plane and the transverse acoustic phonon modes 
dominate the carrier transport process. By contrast, the mobilities obtained 
by the conventional deformation potential approach are found to be as 
large as (2–3) × 106 cm2 V−1 s−1 at 300 K, in which the longitudinal acoustic 
phonon scattering in the long wavelength limit is assumed to be the domi-
nant scattering mechanism. The inadequacy of the deformation potential 
approximation in stanene is attributed to the buckling in its honeycomb 
structure, which originates from the sp2–sp3 orbital hybridization and breaks 
the planar symmetry. This paper further proposes a strategy to enhance car-
rier mobilities by suppressing the out-of-plane vibrations through clamping 
by a substrate.
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It is thus intriguing to understand how and when DPA fails. 
In fact, according to Shockley and Bardeen’s original argument, 
the room-temperature (300 K) accounts for about a de Broglie 
wavelength of 7 nm for electron, which is much longer than 
lattice spacing. Thus, electron scatterings with acoustic pho-
nons have been believed to be the dominant process.[23] Carrier 
transports in iodine-functionalized stanene nanoribbons have 
been studied by using Kubo–Greenwood formalism, where 
el–ph couplings are approximated by calculating deformation 
potentials for longitudinal and transverse acoustic phonons.[40] 
In this work, we consider all the el–ph scattering processes in 
stanene to calculate the carrier mobility. The state-of-the-art 
DFPT[41] coupled with a Wannier interpolation scheme[42] as 
implemented in the Quantum ESPRESSO,[43] Wannier90,[44] 
and EPW packages[45,46] was employed to obtain the ultradense 
electronic band structures, phonon dispersion, and el–ph cou-
pling matrix elements. With all these ingredients, the Boltz-
mann transport theory with relaxation time approximation was 
used to determine the intrinsic charge carrier mobilities. This 
approach was conducted to find the limitation of DPA. Buck-
ling in the hexagonal honeycomb structure of stanene, origi-
nating from the sp2–sp3 orbital hybridization,[47–49] can lead 
to remarkable difference from the planar structures such as  
graphene or graphynes, where huge intrinsic mobility 
≈105 cm2 V−1 s−1 has been predicted.[22] We note that the 
mobility in nonplanar structured monolayer MoS2 was found 
to be 150–410 cm2 V−1 s−1[32,37,50–52] and phosphorene to be 
170–460 cm2 V−1 s−1.[53,54] It is thus intriguing to look at the 
contribution of each phonon mode to carrier transport and to 
compare with DPA for the buckled stanene layer.

2. Results and Discussion

2.1. Electronic Structures and Phonon Band Dispersions

The crystal structure of stanene is illustrated in Figure 1a. The 
optimized lattice constant is 4.676 Å, which is in good agree-
ment with previous calculations (4.676[9] or 4.673[10] Å) under 
the generalized-gradient approximation. The lattice constant 
matches with that of Bi2Te3 substrate (4.383 Å).[11] The obtained 
value of buckling 0.85 Å also agrees with previous calcula-
tion.[10] The experimental buckling value of stanene on Bi2Te3 
substrate was found to be 1.2 ± 0.2 Å, which was ascribed to 
strain-induced enhancement effect.[11] The unit cell of stanene 
consists of two sublattices and the reciprocal space is shown in 
Figure 1b with the first Brillouin zone and the high symmetry 
points Γ = (0, 0), K= (1/3, 1/3), K′ = (2/3, -1/3), and M = (1/2, 0)  
whose base is spanned by b1 and b2. The Dirac cones are seen 
at k = K and k = K′, which we will denote as Dirac point K and 
K′, respectively. The band structures of stanene are depicted 
in Figure 1c to compare with that of graphene. Similar to gra-
phene, the Dirac cones of stanene appear at k = K and k = K′ 
in the first Brillouin zone when spin–orbit coupling is not 
included. However, a band gap of 76 meV is opened when 
spin–orbit coupling (SOC) is taken into account (Figure 1c).  
The band gap is also in agreement with a previous work  
(73 meV).[10] This band gap opening indicates the possibility 
to realize topological insulator phase. We obtain the Fermi 

velocities of 1.44 × 106 and 0.83 × 106 m s−1 at the Dirac point 
for graphene and stanene, respectively. The smaller Fermi 
velocity in stanene is attributed to the less dispersive band 
structure near the Dirac point.

The phonon dispersion relations of stanene and graphene 
are shown in Figure 1d. The phonon branches are classified as 
out-of-plane acoustic (ZA), transverse acoustic (TA), LA, out-
of-plane optical (ZO), transverse optical (TO), and longitudinal 
optical (LO). The flexural ZA mode of graphene obey a quad-
ratic dispersion ωZA ∝ |q|2, which is attributed to the sixfold 
rotational symmetry.[47,55–60] The obtained phonon frequency 
of stanene is about ten times smaller than that of graphene 
because of the heavier atomic mass. The intersection of LA and 
ZO in graphene is absent in stanene.

2.2. Full Electron—Phonon Couplings and  
Deformation Potentials

In order to elucidate the contribution of each phonon modes 
to carrier scatterings, we depict the absolute value of el–ph 
coupling matrix elements (see Equation (3) in the Computa-
tional Methods) for the Dirac point K in the conduction band 
of stanene and graphene as a function of phonon wavevector q 
in Cartesian coordinate over the first Brillouin zone (Figure 2).  
The el–ph couplings for the other Dirac point K′ is shown in 
the Supporting Information. According to the momentum con-
servation law, q = Γ, K, and K′ correspond to the final electronic 
state with wavevector k′ = K, K′, and Γ, respectively, with a dif-
ference of the lattice vector of reciprocal space. Regions fur-
ther satisfying the energy conservation law εk′ = εk ± ℏωq may 
contribute to carrier scattering process. The el–ph couplings 
around the center of Brillouin zone demonstrate intravalley 
transitions, while intervalley transitions are shown near the 
point q = K. For the TA and LA modes in stanene, the inten-
sity of el–ph coupling over the intervalley transition regions are 
complementary, that is, the regions with high intensity for TA 
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Figure 1.  a) Top and side view of stanene. b) Schematic illustration of 
the first Brillouin zone and high symmetry points. c) Band structures of 
graphene (black-dashed), stanene without SOC (red-solid) and with SOC 
(blue-solid, inset). d) Phonon dispersions of graphene (black-dashed) 
and stanene (red-solid).
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are always low intensity in LA and vice versa. This complemen-
tary behavior between TA and LA has also been demonstrated 
for silicene in intravalley region.[36] Remarkably, the high inten-
sity in intervalley region around q = K for TA mode is not seen 
in graphene, which is a striking difference for stanene. It is also 
found that the el–ph coupling strengths for stanene are several 
times smaller than those for graphene for all phonon modes. 
This indicates that the phonon vibrations have weaker effect on 
electronic states in stanene, which agrees with the decreasing 
trend from graphene to silicene.[36]

Near the intravalley region (q = Γ) of Figure 2, which corre-
sponds to the long wavelength limit, the el–ph coupling matrix 
for LA depends linearly on the length of the phonon wavevector 
|q| (see Equation (12) in the Computational Methods). The slope 
is known as the deformation potential constant DLA, which is 
often used for estimating the strength of el–ph couplings both 
experimentally and theoretically. DLA can also be obtained by 
simulating lattice dilation of the unit cell and by measuring the 
change of Fermi level with respect to strains (Figure S2, Sup-
porting Information).[21,22] Table 1 shows that the derivations of 
DLA can give consistent values. For graphene, the values of DLA 

along zigzag and armchair directions exhibit almost the same 
values (5.14 and 5.0 eV, respectively), which is also in agree-
ment with previous theoretical results.[24] Stanene also shows 
nearly the same DLA values along zigzag and armchair direc-
tions, but about one order of magnitude smaller compared to 
graphene. This demonstrates that the el–ph coupling strength 
for stanene is one order of magnitude weaker than graphene. 
This is consistent with the trend that the value of DLA decreases 
with the buckling height. Namely, for graphene, silicene, ger-
manene, and stanene, the buckling height are 0.0, 0.45,[49,61] 
0.69,[8,10] and 0.85 Å, and the value of DLA are 5.0, 2.13,[29] 
1.16,[30] and 0.48 eV, respectively. In addition, the elastic con-
stants C2D show a decreasing trend: 328.30, 85.99,[29] 55.98,[30] 
and 28.5 J m−1, correspondingly. According to the deforma-
tion potential theory, /2D LA

2µ ∝ C D , the decreasing trend of DLA 
is more prominent and may lead to an increase of mobility μ. 
However, the reduced symmetry of stanene (D3d) compared to 
graphene (D6h) may cause additional scattering with phonons 
other than LA.[47,55,56] We account for the further scattering 
process in addition to LA-phonon-limited scattering in the fol-
lowing section.
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Figure 2.  Electron–phonon coupling matrix of a) stanene and b) graphene as a function of phonon wavevector q at a fixed k-point K in the conduction 
band. The white line shows first Brillouin zone. The labels Γ, K, and K′ describe the high symmetry point of phonon wavevector q, which correspond 
to the final state k′ = K, K′, and Γ, respectively.

Table 1.  Lattice constant, deformation potential constant DLA, elastic constant C2D, and electron (hole) mobility μe(h) for stanene and graphene along 
zigzag and armchair dictions at T = 300 K. DP constants from full evaluation of el–ph coupling are given in parentheses.

System Buckling  
[Å]

Direction Lattice const.  
[Å]

DLA [eV] C2D  
[J m−1]

µe  
[105 cm2 (V−1 s−1)]

µh  
[105 cm2 (V−1 s−1)]

Stanene 0.85 Zigzag 4.67 0.47 (0.52) 28.5 27.7 40.1

Armchair 8.09 0.48 (0.52) 28.6 24.4 35.2

Graphene 0.00 Zigzag 4.27 5.00 (4.22) 328 3.32 2.05

Armchair 2.47 5.14 (4.22) 328 3.32 2.05
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2.3. Intrinsic Carrier Mobility

According to Boltzmann transport theory, the carrier mobility 
can be expressed in Equation (1) where the electron group 
velocity and the relaxation time are key parameters. The 
latter is the inverse of the carrier scattering rate derived from  
Equation (2) where the electron, phonon energies, and el–ph 
coupling matrix elements are needed in a fine k- and q-mesh. 
The scattering rates at the Dirac points for both stanene and 
graphene are shown in Table 2 for K and in Table S1 of the Sup-
porting Information for K′. It is found that for graphene, the 
main contribution of scatterings is the LA mode, whereas the 
scatterings with ZA mode are negligible. However, for stanene, 
the scatterings with ZA and TA mode are significantly larger 
than LA mode. In DPA, only LA phonon scattering is con-
sidered. Indeed, the room-temperature mobility of graphene 
derived from deformation potential theory is in good agreement 
with the one calculated by full evaluation of el–ph coupling for 
all phonon modes (Table S1, Supporting Information).[25] DPA 
holds in graphene, but not in stanene.

We demonstrate the mode-resolved phonon scattering 
time as a function of temperature for the sake of comparison 
between stanene and graphene as in Figure 3. As expected, for 
graphene, the curve of “Total” fully coincides with “LA”. For 
stanene, however, “LA” curve is far from the “Total” meaning 
that the LA mode only gives minor contribution. Instead, “ZA” 
and “TA” curves are closer to the “Total”, and even the “LO” con-
tribution is not negligible. Thus, it is not surprising that the 
room-temperature mobility of stanene derived from the defor-
mation potential theory is three orders of magnitude larger than 
that obtained by full evaluation of el–ph coupling for all phonon 
modes (Table S1, Supporting Information). The mode-resolved 
scattering rates of the acoustic and optical phonon branch (ZA, 
TA, LA, ZO, TO, and LO) are separated into intervalley and 
intravalley scattering as listed in Table 3 for K and in Table S2 
of the Supporting Information for K ′. For the LA mode, the 
intravalley scattering overwhelms the intervalley scattering for 
both graphene and stanene. However, the situation is reversed 
for TA and ZA modes in stanene, where intervalley scattering 
overwhelms the intravalley scattering. In graphene, intervalley 
scattering is the minor contribution among all three acoustic 
phonon modes. We note that the large intervalley scattering 
is also reported for silicene.[36] Therefore, the intervalley 

scatterings of TA and ZA for stanene play a dominant role in 
carrier scattering, and the inadequacy of DPA in stanene is 
attributed to the overlook of TA and ZA modes. The contribu-
tion of ZA phonon scattering can be suppressed through sub-
strate suspension or clamping. Here we also performed the 
calculation of mobility excluding the ZA phonon. The mobility 
of stanene was enhanced from (2–3) × 103 cm2 V−1 s−1 to  
(5–6) × 103 cm2 V−1 s−1 when excluding ZA phonon (Table S3, 
Supporting Information).

The temperature dependence of the phonon-limited mobility 
of stanene is shown in Figure 4. The ZA and TA modes domi
nate the optical phonon and LA modes over the whole tem-
perature range. The total mobility obeys a power law of with 
γ = 1.43. The intrinsic room-temperature mobility of stanene 
(2–3 × 103 cm2 V−1 s−1) is two orders of magnitude lower that 
of graphene (2 × 105 cm2 V−1 s−1).[21,24,25] It is noted that the 
intrinsic mobility of stanene is smaller compared to graphene, 
although the weaker el–ph couplings in stanene favor high car-
rier mobility. However, this is not obscure because the phonon 
frequency of stanene is one order of magnitude lower than that 
of graphene. The highest frequency of stanene is smaller than 
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Table 2.  Scattering rate of each phonon mode for electrons and holes in 
stanene and graphene at Dirac point K and T = 300 K.

Scattering rate 1/τ (s-1) Stanene Graphene

Hole Electron Hole Electron

ZA 1.83 × 1012 1.84 × 1012 3.55 × 107 2.33 × 107

TA 1.16 × 1012 1.16 × 1012 2.63 × 1010 6.44 × 109

LA 2.26 × 1010 2.21 × 1010 2.74 × 1011 2.12 × 1011

ZO 1.28 × 1010 1.31 × 1010 9.77 × 109 8.85 × 109

TO 8.23 × 1010 8.19 × 1010 1.36 × 1010 1.43 × 1010

LO 2.37 × 1011 2.29 × 1011 3.99 × 1010 5.32 × 1010

Total 3.35 × 1012 3.35 × 1012 3.64 × 1011 2.95 × 1011

Figure 3.  Temperature dependence of scattering time for the conduction 
band of a) stanene and b) graphene for all phonon modes. For graphene, 
the main contribution to scattering time is the LA phonon. Whereas for 
stanene, the ZA and TA phonon modes dominate.
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25 meV, which means that all the phonon modes are excited 
at room-temperature. Furthermore, the smaller slopes of band 
structures provide more scattering space in stanene.

2.4. Limitation of Deformation Potential Approximation

Here we discuss the limitation of DPA by looking at different 
2D materials. Table 4 shows the calculated mobilities from DPA 
(μDPA) and from full consideration of el–ph coupling (μEPC) in 
2D materials. μEPC for stanene, germanene, and silicene, which 
have bucklings, is several orders of magnitude lower than μDPA, 
indicating the discrepancy of DPA. By contrast, DPA is valid 
for perfectly planar materials such as graphene and α-graphyne 
because μDPA and μEPC compare well with each other. It seems 
to imply a concomitant relationship between nonplanarity and 
the deviation of DPA. For monolayer MoS2, however, even 
though the sandwiched structure results in nonplanarity, the 
carriers do not suffer from ZA phonon scatterings.[36,38,39] 
Indeed, LA phonon scattering dominates in low carrier energy 
region where carrier excitation energies are lower than optical 
phonon energies,[50] and the μDPA of MoS2 is comparable with 
μEPC. Therefore, nonplanarity does not necessarily invalidate 
DPA. Actually, for graphene, α-graphyne, and monolayer MoS2 

(Figure 5) with σh-symmetry, the intravalley carrier scatter-
ings with the flexural ZA phonon is prohibited according to 
the Mermin–Wagner theorem.[39,62] For buckled group IV ele-
mental 2D sheets without σh-symmetry, the intravalley carrier 
scatterings with the flexural ZA phonons dominate due to the 
diverging number of ZA phonons.[39] In addition to intravalley 
scattering with flexural ZA mode, our results also point to the 
limitation of DPA due to the non-negligible intervalley scatter-
ings with ZA and TA. DPA fails when scatterings with ZA or 
TA dominate.

Based on those facts, we conclude that the limitation of 
DPA may be caused by: (1) flexural ZA phonon scattering in 
2D system without σh-symmetry, (2) the intensive intervalley 
scattering process as seen in stanene. For stanene, as a conse-
quence of buckling, the horizontal mirror symmetry is broken 
and significant ZA, TA intervalley, and flexural ZA intravalley 
scattering take place, which results in the breakdown of defor-
mation potential approximation.

3. Conclusion

To summarize, the phonon-limited charge carrier transport 
properties of stanene have been studied by performing first-
principles DFPT calculations with Wannier interpolation. The 
intrinsic room-temperature (300 K) mobility is calculated to be 
(2–3) × 103 cm2 V−1 s−1, which is dominated by the intervalley 
scattering process of the ZA and the TA phonon modes. The 
widely employed DPA, assuming the dominant role of LA pho-
nons near the center of the Brillouin zone (q = Γ), would over-
estimate the intrinsic mobility by three orders of magnitude. 
The invalidity of DPA in stanene is attributed to: (1) the intra-
valley and intervalley scatterings from the flexural ZA phonon, 
and (2) the intensive intervalley scattering with TA phonon. 
DPA has been found to be reasonable for graphene, graph-
diyne, graphyne, and TMD such as MoS2 with σh-symmetry. 
However, it fails in silicene, germanene, and stanene due to 
lack of σh-symmetry.

We propose to enhance the mobility of stanene through 
clamping by a substrate in experiment as the mobility 
increases to (5–6) × 103 cm2 V−1 s−1 when we deliberately 
excludes the ZA phonon scatterings in our calculation. The 
intrinsic mobility of stanene is several times larger than that of 
monolayer MoS2. The high carrier mobility of stanene renders 
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Table 3.  Intervalley scattering and intravalley scattering for electrons in stanene and graphene at Dirac point K and T = 300 K.

Scattering rate (s-1) Stanene Graphene

Intravalley Intervalley Total Intravalley Intervalley Total

ZA 1.27 × 103 1.84 × 1012 1.84 × 1012 1.15 × 10−4 2.33 × 107 2.33 × 107

TA 9.11 × 107 1.16 × 1012 1.16 × 1012 6.43 × 109 1.08 × 107 6.44 × 109

LA 1.74 × 1010 4.68 × 109 2.21 × 1010 2.12 × 1011 5.89 × 107 2.12 × 1011

ZO 2.01 × 108 1.29 × 1010 1.31 × 1010 1.41 × 107 8.83 × 109 8.85 × 109

TO 6.96 × 1010 1.23 × 1010 8.19 × 1010 7.70 × 109 6.62 × 109 1.43 × 1010

LO 6.62 × 1010 1.62 × 1011 2.29 × 1011 5.66 × 109 4.75 × 1010 5.32 × 1010

Figure 4.  Temperature dependence of intrinsic electron mobility in 
stanene with phonon mode contribution.
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it a promising candidate for nanoelectronic and spintronic 
applications.

4. Computational Methods

Charge Carrier Mobility and Electron–Phonon Couplings: In the 
Boltzmann transport theory, the carrier mobility is expressed as[25]
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matrix element. Within the density functional perturbation 
theory, gλq(k,n, n′) is calculated as[41]
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Kohn–Sham potential VKS with respect to the atomic dis-
placement uλq of phonon mode λ and wavevector q, eλq is the 
phonon polarization vector, |ψnk〉 and |ψn′ k + q〉 are the electronic 
initial and final Bloch state, respectively, and M is the atomic 
mass in the unit cell. SOC is not considered in the calculations 
for phonon dispersion and el–ph couplings.

To calculate the relaxation time and carrier mobility from 
Equations (1) and (2), we need to obtain ultradense k-space 
electronic band structures, q-space phonon dispersions, and 
el–ph coupling matrix elements over a fine grid of k- and 
q-mesh, which is tremendously computationally high cost 
at the first principles level. However, by implementing the 
Wannier–Fourier interpolation scheme, accurate electronic 
energies, phonon frequencies, and el–ph coupling matrix ele-
ments can be obtained with reasonable computational burden. 
Within this scheme, the electronic Hamiltonian el

kkH  with 
diagonal elements being the eigenstates of electrons, lattice 
dynamical matrix ph

qqD  and el–ph coupling matrix elements 
gλq(k,n, n′) are first calculated on a coarse k- and q-mesh 

1
( )

2
( )

3
( )× ×kk qq kk qq kk qqN N N . Second, the electronic Hamiltonian is 

transformed from Bloch space to Wannier space by using a 
gauge matrix {Uk} through 
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Table 4.  The mobility calculated with the deformation potential approximation (DPA) μDPA compared to that by the full evaluation of electron–
phonon coupling (ECP) μEPC for 2D materials. The point group Dnh possesses n-fold rotational symmetry with horizontal mirror symmetry σh, while 
Dnd possesses n-fold rotational symmetry without horizontal mirror symmetry.

2D materials μDPA  
[cm2 V−1 s−1]

μEPC  
[cm2 V−1 s−1]

Symmetry Dominant  
phonon

Stanene (3–4) × 106 2000–3000 D3d ZA, TA

Germanene 6.2 × 105[30] 2800[38] D3d ZA, TA[38]

Silicene 2 × 105[29] 2100,[36] 1200,[37] 750[38] D3d ZA,[36,38] TA[38]

Graphene (2–3) × 105, 3 × 105,[24]

1 × 105[27]

(2–3) × 105, 2 × 105,[25]

1.5 × 105[36]

D6h LA[25]

α-Graphyne 3 × 104[31] 1.6 × 104[25] D2h LA[25]

Monolayer MoS2 72–200[32] 400,[36] 130,[37] 410,[50] 150,[52] 230[51] D3h LA,[37,50] LO2
[50]

Figure 5.  The classification of nonplanarity for a) stanene and b) mono
layer MoS2. Buckling structure of stanene results in broken horizontal 
mirror symmetry whereas monolayer MoS2 holds this symmetry due to 
symmetric sandwiched structure.
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,
el † el

e e

e e∑= ( )
′

− ′ −
RR RR

kk RR RR
kk kk kk

kk

H e U H U
i

	
(4)

where the gauge matrix Uk is obtained by the maximally local-
ized Wannier functions method.[42,63] Re and R′e are the lattice 
vectors in real space, which are also the index of Wannier func-
tions. The lattice dynamical matrix is then Fourier transformed 
into Wannier space by using the phonon eigenvector matrix 
{eq} 

,
ph ph †

p p

p pD D
ie e eRR RR

qq RR RR
qq qq qq

qq
∑= ( )

′
− ′ −

	
(5)

where Rp and R′p are the lattice vectors in real space for pho-
nons. The el–ph coupling matrix is then transformed as[64]

,
1

,e p
p

† 1

,

e p∑( ) ( )= ( )− ⋅ + ⋅
+

−RR RR kk qqkk RR qq RR
kk qq kk qq

kk qq

g
N

e U g U ei

	 (6)

where p 1 2 3= × ×qq qq qqN N N N  is the number of unit cells in real 
space. Herein, we have omitted the band and phonon mode 
index in g(k, q) for simplicity. Since the quantities ,

el
e eHRR RR ′ ,  

,
ph

p p
DRR RR ′ , and g(Re,Rp) decay rapidly in Wannier space, we can 
truncate the summation in real space. Finally, we can obtain 
the electronic energy, phonon frequency, and el–ph coupling 
matrix elements on a fine k- and q-mesh 1

( )
2

( )
3

( )N N Nkk qq kk qq kk qq′ × ′ × ′  
by diagonalizing the following matrix 

1el

e
,

el †e

e

e

∑=






′ ′
′⋅

′kk kk
kk RR

00 RR
RR

kkH U
N

e H Ui

	

(7)

1ph †

p
,

php

p

p

D
N

Die e eqq qq
qq RR

00 RR
RR

qq∑=








′ ′

′⋅
′

	

(8)

,
1

,
e ,

e p
†e p

e p

g
N

U g Uie ekk qq RR RRkk RR qq RR
kk qq

RR RR
kk qq∑ ( )( )′ ′ = ( )′⋅ + ′⋅

′+ ′ ′ ′

	

(9)

where e 1 2 3= × ×kk kk kkN N N N  is the number of unit cells in real 
space.

Density functional theory (DFT) and DFPT calculations were 
performed with Quantum ESPRESSO.[43] Norm-conserving 
pseudopotential with the Perdew–Burke–Ernzerhof exchange-
correlation functional[65] was used for the tin atom. For the 
structure optimization, the plane wave cutoff energy, the con-
vergence threshold, and the force were set to be 65 Ry, 10−12 Ry, 
and 10−6 Ry bohr−1, respectively. For the phonon dispersion, a 
k-mesh of 20 × 20 × 1 was used for the self-consistent DFT cal-
culation, while the force constants were obtained with a q-mesh 
of 5 × 5 × 1. The Wannier interpolation method was used to 
obtain ultradense electronic structure, phonon dispersion, and 
el–ph couplings matrix as implemented in the Wannier90[44] 
and EPW code.[45,46] The el–ph coupling matrix was interpolated 
from 10 × 10 × 1 coarse k-mesh and 5 × 5 × 1 coarse q-mesh into 
120 × 120 × 1 k- and q-meshes for stanene. In graphene, the 
el–ph coupling matrix was interpolated from 6 × 6 × 1 coarse 
k- and q-mesh into 120 × 120 × 1 k- and q-meshes. Gaussian 

broadening of 0.045 eV was used for the delta-function in cal-
culating the relaxation time in Equation (2). We excluded el–ph 
couplings for phonons with frequency lower than 5 cm−1.

Deformation Potential Theory: The el–ph coupling can be 
given by 



, ,
2 ω

( )′ =λ
λ

λkkqq
qq

qqg n n
M

M

	

(10)

where the coupling matrix 

| KSM
V

u
n neqq kk qq

qq
qq kkψ ψ= 〈

∂
∂

⋅λ
λ

λ′ +

	
(11)

The deformation potential approximation assumes that 
for the long wavelength limit (|q| ∼ 0), the LA phonon is the 
dominant scattering process and the coupling matrix could be 
expressed in terms of the deformation potential constant DLA

[28]

LA=λ qqqqM D 	
(12)

Assuming elastic scattering, the approximate relaxation time 
is then given by 



1 2
( )(1 cos )B LA

2

2D
,∑τ

π δ ε ε θ= − −
′

′ ′ ′
kk kk

kk kk kk kk
k TD

Cn
n n

	
(13)

When the wavelength of phonon is much larger than the lat-
tice spacing, the dilation of the unit cell can well reproduce the 
deformation potential, which is effective potential produced by 
acoustic wave.

The elastic constant C2D in Equation (13) is calculated by 
parabolic curve fitting of the total energy shift (E–E0) of unit cell 

with respect to the lattice strain 
0

∆l

l
.

2
0

0

2D

0

2− = ∆





E E

S

C l

l 	
(14)

where E0 and S0 are the equilibrium total energy and area of the 
unit cell for 2D materials. The deformation potential constant 
DLA is obtained by linear regression of the Fermi energy shift 

Fε∆  with lattice strain 
0

∆l

l
 for the Dirac cone materials 

F LA
0

ε∆ = ∆





D
l

l 	
(15)

Computational details can be found in the Supporting 
Information.
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