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Highly sensitive switching of solid-state
luminescence by controlling intersystem crossing
Weijun Zhao1,2, Zikai He2,3, Qian Peng4, Jacky W.Y. Lam2,5,6, Huili Ma7,8, Zijie Qiu2,5,6,

Yuncong Chen2,5,6, Zheng Zhao2,5,6, Zhigang Shuai7, Yongqiang Dong1 & Ben Zhong Tang 2,5,6

The development of intelligent materials, in particular those showing the highly sensitive

mechanoresponsive luminescence (MRL), is desirable but challenging. Here we report a

design strategy for constructing high performance On–Off MRL materials by introducing

nitrophenyl groups to molecules with aggregation-induced emission (AIE) characteristic. The

on–off methodology employed is based on the control of the intersystem crossing (ISC)

process. Experimental and theoretical investigations reveal that the nitrophenyl group

effectively opens the nonradiative ISC channel to impart the high sensitivity and contrast

On–Off behavior. On the other hand, the twisted AIE luminogen core endows enhanced

reversibility and reduces the pressure required for the luminescence switching. Thin films can

be readily fabricated from the designed materials to allow versatile applications in optical

information recording and haptic sensing. The proposed design strategy thus provides a big

step to expand the scope of the unique On–Off MRL family.
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Development of intelligent materials1,2 have drawn con-
tinuous attentions for their potential applications in
sensors3–5, displays6, and memories7,8. As one promising

candidate, stimulus-responsive materials are highly desirable9–13.
Of particular interest are those mechanoresponsive luminescent
(MRL) materials14–16, as force is a facile and easily handled
external stimulus. From universe to earth, from machine to
human body, from cell to organelle, force exists and plays vital
roles17–19. Moreover, luminescence is a sensitive and visible
responsive signal20, making MRL materials attractive in
responding the mechanical properties of local environment and
human body21. MRL materials provide valuable insights into the
artificial intelligent systems and human health status, offering
potential applications in data recording and storage, security and
counterfeiting, optoelectronic devices and haptic sensors, etc.22.
As a result, much effort has been placed to develop the MRL
family23–26. However, the performance of the reported system is
still far-reaching from the real applications in terms of sensitivity
and reversibility. Examples exhibiting ultra-sensitivity, high
contrast, fast and response to low force are even rare22.

High contrast MRL materials normally show obvious two-color
switching or dramatic luminescence intensity change, such as
luminescence turn-on and turn-off (On–Off)27–30. However, few
examples of On–Off MRL materials with high contrast are
available in the literature and their overall performance is unsa-
tisfactory. Few limited representatives of On–Off MRL materials
utilize the processes of photodimerizaiton31, photoinduced elec-
tron transfer32,33, intramolecular charge transfer34,35, and strong

π–π interactions modulation36,37 to control the solid-state lumi-
nescence. These traditional strategies employ the strong inter-
molecular interactions to control the photophysical process of
excited state in the solid phase and require strong force to induce
the obvious morphology or conformation switching. The rever-
sibility and reproducibility are thus generally low. To realize
sensitively on–off luminescence switching, the related photo-
physical process requires to alter dramatically in the presence of
small mechanical stimulus, which is really difficult for traditional
MRL materials23,38,39. Hence, new design strategies for control-
ling the related photophysical process in the solid-state of highly
sensitive MRL materials are needed but challenging.

Intersystem crossing (ISC) is a nonradiative relaxation
process from excited singlet state to highly sensitive triplet
state, which weakens or quenches the fluorescence40–42. If we
can effectively control the ISC process and the triplet state is
nonemissive, such an approach can be utilized as a novel stra-
tegy to obtain On–Off MRL materials (Fig. 1a). According to
the perturbation theory, the rate of ISC, kISC, is influenced by
the spin–orbit coupling constant (ξST) and the energy gap (ΔEST)
between the involved singlet and triplet states, and is expressed by
Eq. (1):

kISC / ξ2ST
eΔE
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Nitrophenyl group with abundant lone pair electrons can boost
the efficient ISC pathway with the aid of a great ξST and a
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Fig. 1 Strategies for MRL materials by controlling intersystem crossing. a Proposed mechanism of highly sensitive On–Off MRL materials by controlling
intersystem crossing of nitrophenylated AIEgens. Scale= 100 µm. b Nature transition orbitals of the lowest singlet excited state (S1) and triplet excited
state (T4) of nitrobenzene. Since El-Sayed’s rule states that the multiplicity change becomes highly efficient when the spin–orbit coupling mixes two states
differing in both spin and electronic configuration,T4 is the closet and a good “receiver state” in the intersystem crossing process which determines the
ultrafast S1 depletion through an favored 1(n,π*) to 3(π,π*) channel. c Twisted crystal structures of typical AIEgens: triphenylamine (TPA) and
tetraphenyethylene (TPE). d Molecular structures of nitro-TPAs and nitro-TPEs studied here
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negligible ΔEST, where the spin–orbit interaction mixes two states
differing in both spin and electronic configurations (Fig. 1b,
Supplementary Fig. 18)43–46. It is well known that ξST and ΔEST
are closely related to molecular conformations and electronic
configurations, and thus are highly sensitive to the surrounding
environments such as the solid-state morphology. Therefore, it is
promising to design new On–Off MRL materials by controlling
the ISC process of nitrophenyl-substituted luminophores.

On the other hand, the morphology of organic molecules with
twisted conformations can be easily modulated by mechanical
stimulus47,48. Aggregation-induced emission (AIE) refers to a
class of luminogens (AIEgen) which are nonemissive in solutions
but become highly emissive when cluster into aggregates49.
AIEgens often have twisted molecular conformation, such as
twisted intramolecular charge transfer conformation50, cis–trans
isomerized configuration51, herringbone conformation52, etc.
Among them, triphenylamine (TPA) and tetraphenyethylene
(TPE) are widely used as AIE cores with propeller-like con-
formation (Fig. 1c). Therefore, AIEgens enjoy intrinsic advan-
tages as excellent sensitive MRL candidates.

In this article, we combine nitrophenyl groups with AIEgens to
create sensitive On–Off MRL materials. Six nitro-substituted
AIEgens were synthesized and their properties were systemically
investigated. The manipulation of ISC is unprecedentedly
employed as an on–off methodology and a rational design
strategy is introduced to provide a series of high performance
On–Off MRL candidates with versatile applications. These results
provide a big step in expanding the scope of MRL family.

Results
Photophysical property. To validate our proposal, six lumino-
gens (Fig. 1d) were designed and synthesized through controlling
nitration of TPA and TPE. All the molecules were purified by
twice recrystallization in a yield of higher than 80% (Supple-
mentary Fig. 1)53. As expected, all the six luminogens inherit the
AIE property of TPA and TPE core54. They are nonemissive in
acetonitrile solutions while their aggregates emit bright green or
yellow fluorescence (Fig. 2b), which fulfills the basic prerequisite
as MRL materials23.

Morphology-dependent photophysical properties are then
carefully investigated (Fig. 2a). In the crystalline state, TPA-1N,
TPA-2N, TPE-3N, and TPE-4N are nearly nonemissive with
ultralow quantum yields, which indicates that nitrophenyl groups
successfully open the nonradiative ISC channel to quench the
emission. The ISC becomes the dominant decay pathway as
nitrophenyl groups are efficient triplet state promoters55 (Fig. 1b).
In the amorphous state, all the six luminogens recover or enhance
the luminescence. They exhibit bright green or yellow fluores-
cence as well as in thin films and in aggregates, suggesting the ISC
is blocked due to morphology change (Supplementary Fig. 2 and
Supplementary Table 1-2). The difference is also proved by
detecting the morphology-dependent singlet oxygen generated by
energy transfer from triplet states (Supplementary Fig. 3). TPA-
1N, TPA-2N, TPE-3N, and TPE-4N exhibit the proposed ISC
modulated On–Off MRL properties with a high luminescence
contrast ratio of up to 103 (Supplementary Figs. 4-6). For
comparison, TPE-1N and TPE-2N crystals show intense emission
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Fig. 2 Photophysical properties of designed MRL molecules. a Photos of luminogens in crystalline and amorphous states taken under room and UV light
irradiation with their quantum yields (Φ). Luminescence contrast ratio: αФ=Φa/Φc. b Fluorescent photos of luminogens in acetonitrile and acetonitrile/
water mixtures taken under UV light irradiation, luminogens concentration: 1 × 10−5M. c Switching the luminescence of TPE-4N film deposited on a
weighing paper through different processes: I, heating at 150 °C or fuming with acetone for 10 s; II, grinding with a glass rod; III, heating with a paper mask
for 30 s; IV, grinding with a paper mask. All fluorescent photos were taken under UV irradiation at 365 nm. Scale= 2 cm. d Plot of luminescence quantum
yields versus repeated grinding and heating cycles
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with high quantum yield of 20.24% and 24.35%, respectively,
possibly because the number of nitrophenyl groups is still not
enough to overwhelm the AIE effect. Such a factor is critical in
constructing On–Off MRL materials, which will be discussed
later.

TPE-4N, for example exhibits the On–Off MRL property with
the highest contrast. We placed TPE-4N crystals on a piece of
weighing paper and ground them into powders, through which a
yellow emissive paper was obtained under the UV irradiation.
The emission is firstly turned off when annealing at 150 °C or
fuming with acetone for 10 s (Process I). The yellow emission can
be easily recovered by grinding (Process II). Contrast patterns are
obtained through process I and II using a designed mask (Fig. 2c).
Monitored by the quantum yields, the processes can be repeated
for several cycles without obvious fatigue, suggesting the good
reversibility (Fig. 2d and Supplementary Fig. 7).

Organic crystals with twisted molecular structures can be easily
amorphorized by applying mechanical stimulus. In addition to
photophysical study, we performed powder X-ray diffraction
(PXRD) and differential scanning calorimetry (DSC) analyses to
investigate the morphology change. The PXRD patterns of
ground powders show no visible diffraction peaks, indicating
their amorphous characteristic caused by mechanical grinding
(Supplementary Figs. 8-9). In contrast, the PXRD patterns of
thermal annealed or solvent-fumed samples exhibit sharp
diffraction peaks which coincide with single crystals, indicating
that the amorphous powder transfers to crystalline state. Such
transformation is verified by PXRD and DSC in Supplementary
Fig. 10. The above results show that the solid-state luminescence

of TPE-4N is strongly related to the morphology, which is easily
switched by mechanical stimulus and thermo-annealing or
solvent-fuming. Meanwhile, TPA-1N, TPA-2N, and TPE-3N
show similar On–Off MRL properties as TPE-4N (Supplementary
Figs. 10-12).

Single-crystal XRD analysis shows the presence of abundant
weak intermolecular interactions between the nitro and phenyl
groups in all the crystals (Supplementary Figs. 13-16). For
example, one TPA-1N molecule is surrounded by seven
neighboring molecules through multiple weak C–H···C and
C–H···O interactions (Fig. 3a). Together with the twisted structure
inheriting from TPA and TPE, those luminogens have quite loose
crystal packing. Solvent molecules are encapsulated in the crystal
cavities of TPE-3N and TPE-4N (Supplementary Figs. 12, 15,
Table 4-6). After removing the solvent molecules, the crystals
pack in a looser manner but still are nonemissive, which excludes
the possibility of solvent-caused quenching effect (Supplementary
Figs. 8-9). For those loose packed crystals, the mechanical force
could easily break the weak interactions to release the molecular
conformations to free states.

As proposed, AIEgens substituted with suitable nitro groups
can realize unique On–Off MRL properties, verifying the validate
of our design strategy. However, both crystals and amorphous
powders are solid phase, why they exhibit distinctly different
luminescence behaviors?

Theoretical calculation. To gain deeper insight into the
mechanism of On–Off MRL property, we performed
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investigations on single molecule in both gas and crystalline states
by first-principle density functional theory (DFT) and time-
dependent DFT (TD-DFT). The aggregation effect was con-
sidered by using the hybrid quantum mechanics and molecular
mechanics approach. The computation models are built by dig-
ging a 5 × 5 × 5-unit supercell from the single-crystal structures.
The calculated energy gaps (ΔEST), nature transition orbitals,
spin–orbit coupling constants (ξST) between S1 and involved tri-
plet states are summarized in Fig. 3 and Supplementary Figs. 18-
25. As well known, luminescence change is the outcome of var-
iation of intermolecular interaction and molecular conformation
during morphology transformation.

The effect of intermolecular interaction is first considered. The
energy levels and ξST are carefully calculated under the same
molecular conformation in the absence or presence of intermole-
cular interactions. The almost same calculation results suggest that
the intermolecular interactions are not the main or direct factor for
the MRL On–Off properties (Supplementary Figs. 20-25).

The effect of molecular conformation is then investigated.
TPA-1N is chosen as the calculated model. As shown in Fig. 3c, d,
a big difference in molecular conformation in crystalline and gas
state is found, that molecule in crystal has much smaller torsion
angles (α= 17.62°, β= 26.81°) than that in free gas state (α=
β= 27.95o). The variation of molecular conformation is accom-
panied with a decreasing energy gap of S1–S0 from 3.37 eV in
crystal state to 3.22 eV in gas state, which agrees with the notable
redshift in absorption (Supplementary Fig. 17). Thus, the
amorphous state can be considered as a state close to gas state
with similar molecular conformation. In detail, TPA-1N molecule
in crystal state possesses a typical 1(π,π*) S1 state and a low-lying
transition-allowed 3(n,π*) T3 state with a large ξS1T3= 4.85 cm−1

and a small ΔES1T3= 0.17 eV, which enables the efficient ISC and
thus causes fluorescence quenching. For molecule in gas state, the
low-lying triplet state changes to a transition-forbidden 3(π,π*) T2

state, accompanied by a reduced ξS1T2= 0.91 cm−1 and a larger
ΔES1T2= 0.35 eV, which blocks the efficient ISC process and
turns on the fluorescence in amorphous state. Similar explana-
tions are applicable for TPA-2N, TPE-3N, and TPE-4N, where
transformation from crystal to amorphous state enlarges ΔEST
and reduces ξST, simultaneously (Supplementary Figs. 20-25).

To further simulate how molecular conformation influences the
ISC process, a rigid potential energy surface scan is performed by
varying the torsion angle α from 10 to 40° in the ground state. The
vertical excitation energies of low-lying excited states S1 and T1–4

and the involved ξST are also calculated. As shown in Fig. 3b, e,
when α is smaller than 26°, T3 with a 3(n,π*) configuration is the
closest low-lying triplet state to S1 with a high ξST (>4.5 cm−1).
The different orbital character and the close proximity of the S1
state to the T3 state favors the occurrence of efficient ISC in the
crystalline state (α= 17.62o). As α is larger than 26°, the energy of
S1 decreases significantly which results in T3 higher than S1 in
energy. T2 now becomes the closest low-lying triplet state to S1
instead. The ISC then becomes inefficient as S1 and T2 have the
same orbital character and a large energy gap exists between them.
This situation is similar in the amorphous state.

Last, the effect of substituent number is studied. From TPA-1N
to TPA-2N, from TPE-1N to TPE-4N, more nitrophenyl groups
gradually increase the number of involved triplet states with
minimizing energy gaps and enhancing ξST (Supplementary
Figs. 20-25). Therefore, the ISC process is boosted by multiple
nitrophenyl group substitution to lead TPE-4N the highest
On–Off contrast.

Thin-film On–Off property. To demonstrate the practical
applicability and to measure the sensitivity, TPE-4N in thin film

was prepared by simple spin-coating of its chloroform solution on
quartz plates. As shown in Fig. 4a and Supplementary Figs. 25-26,
the freshly coated film is quite transparent and smooth. It emits
bright green light peaked at 520 nm (Fig. 4b). The emission
quenches quickly and the PL intensity remarkably decreases by a
factor of 103 when the film is annealed at 150 °C by a handed heat
gun for 3 s. The PXRD patterns demonstrate that the freshly
coated film is amorphous in nature while the annealed one is
crystallized (Supplementary Fig. 28). Interestingly, well-defined
and bright green emissive words appear when writing on the
annealed film by using a fine glass tube. After thermal treatment,
the emissive words erase completely. The writing and erasing
processes can be repeated for many times, suggesting the excellent
reversibility of the fluorescence switching process.

In a further experiment, we demonstrate the On–Off sensitivity
of thin-film fluorescence switching. The polarizing optical
microscopic photo of the annealed film taken under room light
show the presence of uniform spherulites (Fig. 4c). When a weak
force is applied using a glass tube, scratch was not observed under
room light but was clearly visualized under UV light irradiation
with more than 100-fold contrast (Fig. 4d). Again, upon thermal
treatment, the bright fluorescent scratch disappears. Because of
such ultra-sensitivity, we are now conducting investigations on
fluorescence mapping and visualization of stress distribution and
fatigue crack propagation for industry use.

Optical information storage and haptic sensor. The designed
On–Off MRL materials have the advantages of high contrast and
sensitivity, good reversibility, and fast response, which encourage
us to further explore their practical applications in optical
information storage and haptic sensor.

Figure 5a describes the rewriteable optical information storage
system containing the procedures of film preparation, micro-
embossing, and recovery. A nonemissive film was facilely
prepared by thermal annealing of the spin-coated film. After
applying a finger pressure using a designed mold to the annealed
film, a high-resolution micro-embossing fluorescent patterns can
be easily replicated with a width of 10 μm and a spacing of 10 μm.
To the best of our knowledge, this is the first MRL patterns with
micrometer resolution. The micro-embossing patterns are erased
completely upon thermal treatment, and the film is rewriteable
again.

Next, we utilized TPE-4N to construct haptic sensor. The TPE-
4N films are deposited on aluminum, ceramic, and wooden
substrates by simple brush coating process (Methods), which
show bright fluorescence (Fig. 5b). The fluorescence signal of the
freshly prepared films is turned off completely by thermal
annealing. Upon pressing with thumb fingers, the fluorescence of
the touched area was turned on immediately to generate well-
defined fingerprint patterns observable by naked eyes (Supple-
mentary Fig. 29). In detail, the pressure is gradually enhanced
from 0 to 0.98MPa (Fig. 5c and Supplementary Fig. 30). To allow
visualize monitoring, the fluorescent signal is digitized using
image grayscale processing. As shown in Fig. 5d, when the
applied finger pressure reaches 0.15MPa, the grayscale intensity
increases by 3.5-fold. At 0.25MPa, a 7.7-fold strong signal was
detected. The intensity reaches its maximum (15-fold) at 0.55
MPa. After thermal treatment, the film recovers to its none-
missive state and is reusable (Supplementary Fig. 31). The results
suggest a promising fast responsive and reversible haptic sensor.

Discussion
Nitrophenyl group is a well-known electron and energy acceptor
and can serve as an excited state or fluorescence quencher30,56,57.
However, the use of nitro-substituted aromatics in constructing
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luminescent materials is seldom explored because it promotes
ultrafast nonradiative relaxation ISC process to give nonemissive
character of triplet state. Apparently, nitro substitution effect and
AIE effect are conflict in terms of solid-state luminescence. Here,
we unprecedentedly integrate them in constructing highly sensi-
tive MRL materials. In the crystalline state, the nitrophenyl group
effectively opens the nonradiative ISC channel to the highly
sensitive and nonemissive triplet states to overwhelm the AIE
effect to give fluorescence “Off” state. Mechanical stimulus
manipulates the solid-state morphology and changes the mole-
cular conformations. The AIE effect then dominates the photo-
physical process to recover the solid-state emission to give
fluorescence “On” state.

Except ISC, nitrophenyl group imparts abundant weak inter-
molecular interactions to benefit easy crystallization and loose
crystal packing. Coupled with the twisted and propeller-like
molecular structure, the morphology transformation of the
resulting molecules becomes facile and reversible. The pressure
required for luminescence switching is then dramatically reduced
to result in excellent sensitivity, fast response, and high contrast
On–Off performance. The nitrophenyl group is also helpful for
thin-film coating or printing on varied substrate to make the
materials valuable for optical information recording and haptic
sensing with facile preparation and low cost.

Controlling ISC is a general strategy to achieve novel
On–Off MRL materials. Following this strategy, we choose the
benzophenonyl group as another triplet promoter and two TPE
derivatives, namely TPE-BP and 2TPE-BP, are synthesized as
proof-of-concept examples (Supplementary Figs. 32-33). As
expected, they are nonemssive in both solution and crystalline
state but their amorphous powders emit bright green fluores-
cence. The benzophenonyl groups are considered to open the
efficient nonradiative ISC channels to quench the light emission
as they show even stronger triplet-state promotion effect than
nitrophenyl group. One benzophenone moiety can turn off the
emission two TPE groups in crystalline state. Efforts to expand
On–Off MRL family by using this rational design strategy are still
in progress.

In summary, we put forth a new design strategy for high
performance On–Off MRL materials by controlling the ISC
process. Nitro groups are incorporated into twisted AIEgens to
facilitate the efficient ISC process. Theoretical calculations indi-
cate that the torsion angle and the number of nitrophenyl group
are key factors for tuning the ISC process. Mechanical stimulus
modulates the molecular conformations to give varied solid-state
morphology with luminescence On–Off switching. Experiments
demonstrate the high contrast and sensitive On–Off MRL per-
formance as well as reversibility and fast responding behaviors.
Such properties enable them to find versatile applications such as
the optical information storage and haptic sensor. Thus, the
design strategy introduced in the present study is expected to
provide a big step in expanding the scope of On–Off MRL family.

Methods
Crystal growth. All the crystals were cultivated through slow solvent evaporation
at room temperature. Single crystals of TPA-1N, TPA-2N, TPE-2N, TPE-3N, and
TPE-4N can been obtained easily, while TPE-1N crystal is not suitable for single-
crystal analysis. Single crystals of TPA-1N, TPA-2N, and TPE-2N were cultivated
from methylene chloride and hexane mixtures. Single crystal of TPE-3N was
cultivated from chloroform and hexane mixtures. Single crystal of TPE-4N was
cultivated from acetone.

Solid samples preparation. The amorphous solids of AIEgens were prepared by
heating the crystalline AIEgens to melts with a heating gun and quenching the
melts with liquid nitrogen. The ground powers were prepared with a mortar and
pestle for 3 min.

Film preparation of TPE-4N. Spin-coating films of TPE-4N were prepared by
simple spin-coating on quartz substrates (2 cm × 2 cm) from a chloroform solution
(5 wt%). Spin-coating speed: slow spin speed (0.3 kR/min, 6 s) and fast spin speed
(1 kR/min, 30 s). Brush coating samples were prepared by simply brushing on
different substrates using a chloroform solution (10 wt%).

Stamping mold. A stamping mold was prepared on a circular silicon substrate (2
inches in diameter): striping pattern with 0.5 mm in thickness, 10 μm in width, and
10 μm in fringe spacing. The etching depth is 20 μm.

Data availability. The authors declare that the all data supporting the findings of
this study are available within this article and Supplementary Information files, and
also are available from the authors upon reasonable request. CCDC 1550422,
1550423, 1550424, and 1850508 contain the crystallographic data for this paper.
These data can be obtained free of charge from The Cambridge Crystallographic
Data Centre via www.ccdc.cam.ac.uk/getstructures.
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