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ABSTRACT: Here, we design and synthesize an organic laser molecule, 2,7-
diphenyl-9H-fluorene (LD-1), which has state-of-the-art integrated optoelec-
tronic properties with a high mobility of 0.25 cm2 V−1 s−1, a high
photoluminescence quantum yield of 60.3%, and superior deep-blue laser
characteristics (low threshold of Pth = 71 μJ cm−2 and Pth = 53 μJ cm−2 and
high quality factor (Q) of ∼3100 and ∼2700 at emission peaks of 390 and 410
nm, respectively). Organic light-emitting transistors based on LD-1 are for the
first time demonstrated with obvious electroluminescent emission and gate
tunable features. This work opens the door for a new class of organic
semiconductor laser molecules and is critical for deep-blue optical and laser
applications.

■ INTRODUCTION

Organic laser semiconducting molecules are the basis of
organic light-emitting transistors (OLETs) and electrically
pumped organic lasers (EPOLs), which demonstrate great
promise for smart display technology, organic lasers,
biosensing, and other related optoelectronic circuits.1−5

However, it remains a big challenge for the development of
molecules for OLETs and EPOLs over the past decades.6−11

One of the key restrictive factors is the design motif integrating
high mobility, strong emission for efficient electro-optic
conversion, and ideal laser characteristics to achieve a
sufficiently high number of excited states under high current
density to initiate lasing.8,9,12,13 Designing highly π-extended
fused conjugated systems is one effective approach to
increasing charge transport for high mobility;14−16 however,
such kinds of molecules always show very weak fluorescence in
the solid state due to the significant quenching of excited states
induced by condensed molecular packing and remarkable
singlet fissions.17,18 Reducing the π-conjugation and inter-
molecular interactions enough may enhance the fluorescence
efficiency of organic materials but generally at the cost of
efficient charge transport property.19−21 More recently,
achievement of high-mobility emissive organic semiconduc-
tors,22−26 high-efficiency OLETs,6,7,27,28 and the exciting
indication of current-injection lasing from an organic semi-
conductor29 have been demonstrated, which brings the hope
and passion of scientists from different fields to this field of

research. Generally speaking, to date, such materials are still
very limited, and only very few of them could meanwhile
possess the characteristic of an amplified spontaneous emission
(ASE) phenomenon at reasonably low pump intensities, not to
mention simultaneously possessing good optical gain for lasing
character.8,9,30−32

Here, we design and synthesize a fluorene-based organic
semiconductor, 2,7-diphenyl-9H-fluorene (LD-1) (Figure 1a),
with efficient charge transport, strong emission, as well as
superior lasing character. The molecule design concept of the
LD-1 compound is as follows: (i) fluorene as the unit core is
intrinsically a superior building block for organic lasers;8,31 (ii)
it is easy to get derivatives at the 2 and 7 positions for
extending π-conjugation and modulating molecular arrange-
ment to enhance the charge transport; (iii) it is also a
promising building block for designing blue emitting
materials,33−35 which is particularly important in displays and
lasing but difficult to be achieved; (iv) the introduction of a
rotational carbon−carbon bond for extending π-conjugation
could modulate both optical and electrical properties for their
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good integration.12,22−24,36 Indeed, experimental results
demonstrate that the LD-1 compound well integrates the
properties of high-mobility charge transport and strong
luminescence with a carrier mobility of 0.25 cm2 V−1 s−1 and
a photoluminescence quantum yield (PLQY) of 60.3% for its
single crystals. Moreover, a deep-blue-emissive whispering-
gallery-mode (WGM) laser is demonstrated with a low
threshold of 71 and 53 μJ cm−2 and a high-cavity quality
factor (Q) of 3100 and 2700 at emission peaks of 390 and 410
nm, respectively. To our knowledge, LD-1 is among the best
performers of deep-blue organic semiconductor lasers
integrating efficient charge transport property reported in the
literature (Tables S1 and S2). These attractive features of LD-1
make it a good candidate for the research of integrated
optoelectronic devices.

■ RESULTS AND DISCUSSION
LD-1 was synthesized from 2,7-dibromofluorene and phenyl-
boronic acid using a palladium-catalyzed Suzuki coupling
reaction with a high yield of 63% (Scheme S1). After the
vacuum-sublimation purification process, a milky white powder
was obtained. Strong blue emission is easily observed under
UV light illumination in both cases of solution and powder,
giving a high PLQY of 65 and 50%, respectively (Figure S1).
The highest occupied molecular orbital (HOMO) of −5.76 eV
was calculated based on the cyclic voltammetry (CV)
measurement curve (Figure S2), and the lowest unoccupied
molecular orbital (LUMO) of −2.72 eV was further calculated
based on the HOMO level and an energy band of 3.04 eV is

obtained from its UV−vis curves which will be shown in the
following section. Good thermal stability of LD-1 with a
sublimation temperature of 337 °C was characterized from
thermal gravimetric analysis (TGA) (Figure S3). Large-sized
single crystals of LD-1 were obtained via a slow evaporation
process from the saturated mixture solution of CH2Cl2:ethanol
= 1:2 at room temperature. X-ray crystallographic data
demonstrates that the LD-1 crystal belongs to an ortho-
rhombic system with cell parameters of a = 5.8687(2) Å, b =
33.6814(8) Å, and c = 8.4453(3) Å (CCDC: 1942276, Table
S3). As indicated by single crystal data, a slight rotation angle
of 26.01 and 14.00° is determined for the two π-extended
benzene rings (left and right) relative to the fluorene core due
to the rotation effect of the C−C bond (Figure 1b), which is
beneficial for the reduction of the fluorescence quenching
effect.22−24,36 Under the balance of the C−C bond, good
electron distributions on the whole molecule at both HOMO
and LUMO levels are also demonstrated, which is favorable for
forming strong intermolecular interactions to achieve efficient
charge transport. A typical herringbone molecular packing
mode with a herringbone angle of 64.08° is adopted by LD-1
in single crystals where multiple strong C−H−π interactions
(2.730−2.891 Å) between neighboring molecules are formed
(Figure S4). All of the results suggest the capacity of LD-1 to
integrate strong fluorescence and efficient charge transport
properties together.
To further investigate the charge transport and optical

property of LD-1, high-quality micro/nanosingle crystals of
LD-1 were prepared by physical vapor transport (PVT).
Slightly elongated hexagon LD-1 crystals with a side-length
(W1 (long edges)/W2 (short edges)) ratio centered at around
1.8 based on 100 crystals were usually obtained (Figure S5),
which have a smooth surface (root-mean-square (RMS): 0.789
nm) and thickness of around 100 nm characterized by atomic
force microscopy (AFM) (Figure S6). A high PLQY of 60.3%
was determined for single crystals of LD-1 (Figure 1c), which
is slightly lower than that of LD-1 in solution due to the
aggregation effect but still maintains the strong emission
characteristic, even in a single crystal state. Under 330−380
nm light illumination, a typical optical waveguide feature was
observed for LD-1 crystals with a manifestation of very bright
emission from their crystal edges suggesting the high quality of
the obtained LD-1 crystals, which is a crucial parameter for
high optical gain to initiate lasing. Figure 1d shows the X-ray
diffraction (XRD) patterns of LD-1 micro/nanocrystals grown
on Si/SiO2 substrate where a series of very sharp and strong
diffraction peaks were observed. These diffraction peaks could
be well indexed by (0k0) reflections based on single crystal
data of LD-1, giving a layer-by-layer growth mode along the b-
axis with an interlayer d-spacing of 33.94 Å, indicating that the
long axis of the LD-1 molecule is nearly standing on the
substrate (Figure S7a). Figure 1e shows the transmission
electron microscopy (TEM) image of an individual LD-1
single crystal and its corresponding selected area electron
diffraction (SAED) pattern, which was taken by directing the
electron beam perpendicular to the flat surface of an individual
LD-1 single crystal. The bright and strong multiorder
diffraction peaks further confirm the high crystallinity of LD-
1 micro/nanocrystals. Based on the LD-1 crystal cell
parameters, the spots in the white square and green circle
can be ascribed to the Bragg reflections of (001) and (100)
planes with d(001) = 8.46 Å and d(100) = 5.93 Å, respectively.
Combining XRD and SAED results together, a schematic of

Figure 1. (a) Chemical structure of LD-1 molecule and (b) the views
of LD-1 molecule seeing perpendicular (top) to and along (side) the
conjugated plane of fluorene core. (c) Fluorescent image of LD-1
single crystals obtained through the PVT technique. (d) XRD
patterns of LD-1 single crystals (the inset is a schematic of the
elongated hexagon LD-1 crystals with the indexed diffraction planes
according to structure analysis). (e) TEM image of an individual
crystal and its corresponding SAED pattern. Scale bar: 2 μm. (f) Two-
dimensional charge transport routes in LD-1 crystals with herringbone
molecular packing.
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LD-1 crystal planes in hexagon morphology is shown in the
inset of Figure 1d, where the crystals (010) and (010) crystal
planes are on the top and bottom bound by (002), (002),
(101), (101), (101), and (101) crystal planes on the six side-
faces, ∠(002)/∠(101) = 125°, ∠(101)/∠(101) = 110°
(Figure S7b). As shown in Figure 1f, an efficient two-
dimensional charge transport network is formed in the
direction of ac planes, which is parallel to the substrate. In
this case, if one molecule gains a charge, it can quickly transfer
to the two neighbors and then onto the surrounding molecules,
forming a two-dimensional network, which would ensure high
mobility in planar organic field-effect transistors (OFETs).14,37

The photophysical properties of LD-1 in solution and single
crystal state were systematically investigated. Figure 2a shows
the UV−vis absorption and photoluminescence (PL) spectra
of LD-1 in dichloromethane (CH2Cl2) solution and crystals as
well as the amplified spontaneous emission (ASE) spectra of
LD-1 crystals. Key photophysical parameters measured for LD-
1 are summarized in Table 1. A high molar absorption
coefficient of 4.4 × 104 M−1 cm−1 at 323 nm was determined
for LD-1 in dilute CH2Cl2 solution, a primary parameter

ensuring for its strong emission. In comparison with that of
solution absorption, an obvious bathochromic shift with the
main peaks located at 353 nm is demonstrated for LD-1
crystals, which is one indication of J-aggregation in crystals. PL
spectra demonstrate that the main emission peak of LD-1
crystal is red-shifted to 407 nm, suggesting LD-1 is a deep-blue
emission semiconductor. As we know that, it still remains an
urgent task to develop high-performance deep-blue emissive
organic semiconductors, though it is greatly crucial in organic
optoelectronic devices. According to the National Television
Standards Committee (NTSC), the calculated Commission
Internationale de l’Éclairage (CIE) coordinates of LD-1 are
(0.16, 0.07) (Figure 2b), which are very close to the standard
blue CIE coordinates of (0.14, 0.08), suggesting LD-1 is also
one of the very few blue emissive organic semiconductors
reported so far.38−40 The superior deep-blue character of LD-1
with CIE y < 0.10 suggests its great potential for blue optical
and laser applications. The time-resolved fluorescence spectra
shown in Figure 2c reveal the reduced fluorescence lifetime (τ)
for LD-1 crystals (1.90 ns) compared to that of its CH2Cl2
solution (2.83 ns) when fitted by a double-exponential decay

Figure 2. (a) UV−vis absorption, PL, and ASE (filled area) spectra for the LD-1 in CH2Cl2 solution and crystals. (b) CIE 1931 coordinates of the
LD-1 crystals. (c) Time-resolved peak fluorescence of LD-1 in CH2Cl2 solution and crystals. (d) Schematic graph of the four-energy level of LD-1
molecule and the HOMO and LUMO in crystals.

Table 1. Summary of Photophysical Properties of LD-1 in CH2Cl2 Solution and Crystals

LD-1 λabs
a (nm) εmax

a (M−1 cm−1) λem
a (nm) ΦF

a,b τFL
c (ns) kr

d (s−1) knr
e (s−1)

in solution 307 323 4.4 × 104 356 368 0.65 2.83 2.30 × 108 1.24 × 108

crystals 353 407 0.60 1.90 3.16 × 108 2.11 × 108

aIn CH2Cl2 solution (1 × 10−5 M). bΦF of the absolute photoluminescence quantum yield (PLQY) via using the integrating sphere. cFluorescence
lifetime. dRadiative deactivation rate calculated according to the kr = ΦF/τFL equation.

eNonradiative deactivation rate calculated according to the
knr = 1/τFL − kr equation.
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model (Table S4). Correspondingly, fast radiative deactivation
rates (kr = ΦF/τFL) of 3.16 × 108 and 2.30 × 108 s−1 are
determined for LD-1 in crystals and solution, respectively,
suggesting the efficient emission of LD-1 both in solution and
in crystals. Typical ASE property was further characterized for
LD-1 single crystals when using a 355 nm pulsed laser as the
excitation source along with increase of the pulse energy
(Figure 2a and Figure S8). A narrowed bandwidth of PL
spectrum with a half-maximum (fwhm) of 9.66 nm was
observed for LD-1 crystals, and a sharp ASE peak is located at
407 nm, which is well consistent with that of its PL spectrum.
A threshold energy of 168 μJ cm−2, high gain coefficient (48
cm−1), and low loss coefficient (5.29 cm−1) were further
characterized based on the deep investigations at the ASE peak
(Figure S9). In addition, according to the theoretical
calculation (Figure 2d, Figure S10, and Table S5), a well-
separated four-energy level is formed between the ground state
S0 and the first excited state S1. Consisting of 96.6% local
transition from the HOMO to the LUMO, S1 is a highly
luminescent state with a calculated transition dipole moment
larger than 12 D. After being excited to the S1 state, the
molecule will immediately relax to the lowest vibrational level
of S1 (E3). Spontaneous and stimulated emission will then take
place from E3 to E2, followed by another immediate vibrational
relaxation process to E1. This four-energy-level system
guarantees that more luminophores populate on the E3 than
E2. A large Stokes shift is observed in both the spectra and the
four-energy-level graph. All of the results demonstrate that LD-
1 is a superior deep-blue organic semiconductor with very
strong emission, good optical waveguide emission, and ASE
property for organic solid-state lasers.

Encouraged by the above results, we further investigated the
lasing characteristics of LD-1 crystals (Figure 3). Obviously,
two main lasing peaks located at 390 and 410 nm were evolved
in the PL spectra along with increasing the pulse density
(Figure S11), demonstrating a multimode lasing characteristic,
as evidenced by the high-resolution PL spectra shown in
Figure 3a and d. As can be seen that the two PL spectra display
a broad spontaneous emission at low pump density excitation
when the pump density exceeds the threshold (Pth) of 71 μJ
cm−2 at 390 nm and Pth = 53 μJ cm−2 at 410 nm, respectively
(Figure 3b and e), a set of sharp peaks merges on the top of
spontaneous emission spectra. In addition, the intensity
dependence is fitted according to the power law xp equation.41

The latter p = 2.99 ± 0.15 (390 nm) and p = 1.85 ± 0.05 (410
nm) above the threshold were further calculated, indicating a
superlinear regime with a typical characteristic of laser
emission. As shown in the left inset of Figure 3b, the strong
deep-blue laser emission occurs on the top four edges of LD-1
single crystal, indicating that the LD-1 single crystal can act as
an efficient 2D microresonator of whispering-gallery-mode
(WGM). It could be deduced that the light was totally
reflected by the four edges and transported along an oblong
route in the crystal, as shown in the inset of Figure 3e. To
confirm the WGM microresonator, the dependence of the
spacing between adjacent modes (Δλ) on the optical path
length (L) of LD-1 single crystals was further characterized
(Figure 3g). Clearly, the mode spacing Δλ gradually decreases
and exhibits more and more modes with the increase of the
optical path length L. Specifically, Δλ390 = 0.73, 0.59, and 0.48
nm were observed for length L = 17, 23, and 30 μm at an
emission peak of 390 nm, and a similar phenomenon was also

Figure 3. High-resolution PL spectra of the laser emission around 390 nm (a) and 410 nm (d) under different pump densities. (b) Integrated area
of the peak 390 nm as a function of pump density. The lasing threshold is identified as the intersection between the sublinear and superlinear
regions. Inset: forth bright PL edges of the LD-1 single crystal under 355 nm fs laser excitation. (e) Integrated area of the peak (410 nm) as a
function of pump density. Inset: illustrate a typical optical-ray analysis within WGM- LD-1 microcavity. Optical mode simulation results for a LD-1
single crystal with W1 = 18 μm and W2 = 9 μm, Q = 3088 of λ = 390 nm (c) and Q = 2600 of λ = 410 nm (f). (g) High-resolution PL spectra of
laser emission recorded above the threshold for LD-1 with L = 17, 23, and 30 μm. (h) Mode spacing Δλ at λ = 390 and 410 nm versus 1/L of the
LD-1 crystals, showing a clear linear relationship.
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observed for the lasing emission peak at 410 nm with Δλ410 =
1.11, 0.91, and 0.78 nm for length L = 17, 23, and 30 μm. Such
evolution between Δλ and length L well corresponds to the
characteristic of the WGM cavity.42,43 To further understand
the resonant mode and the relationship of the WGM cavity
and mode spacing, the following equation is used

λ λ
λ λ

Δ =
[ − ]L n n(d /d )

2

where Δλ is the spacing between adjacent modes (Figure S12),
[n − λ(dn/dλ)] is the group refractive index,42,43 according to
geometric conditions, and the optical path length (L) within
the resonator could be expressed as

= + × °L W W2( sin 55 )1 2

where W1 and W2 are the edge lengths of the LD-1 single
crystal (inset image in Figure 1d). The linear increase of Δλ
along with that of increasing 1/L further confirms the
formation of the WGM-mode cavity for both lasing peaks of
390 and 410 nm (Figure 3h). In addition, the cavity quality
factor, another important lasing parameter, is also investigated
with the equation of Q = λ/ΔλL, where λ is the lasing peak
wavelength and ΔλL is the fwhm of the the lasing peak (Figure
S12), a significant parameter to evaluate a laser microcavity.44

Very high experimental Q factors of ∼3100 at 390 nm and
∼2700 at 410 nm were obtained (Table S6), which are well

consistent with those of simulated Q values of 3088 at 390 nm
and 2600 at 410 nm (Figure 3c and f). Furthermore, LD-1
single crystals demonstrated good lasing stability during our
experimental measurement, which is important for its potential
applications.
Furthermore, the charge transport property of LD-1 was

investigated based on organic field-effect transistors (Figure
S13). Due to the extension of π-conjugation in LD-1
compound ensuring strong intermolecular couplings, efficient
electrical transporting property was confirmed for LD-1 with
the saturation charge carrier mobility up to 0.25 cm2 V−1 s−1

calculated from the typical transfer curves of organic field-effect
transistors according to the equation IDS = (μWCi/2L)(VG −
VT)

2 (Figure S14) which is more than 1 order of magnitude
higher than that previously reported for fluorene-based organic
laser semiconductors (Figure S15 and Table S2). The
integration of superior optical and electrical transport proper-
ties for the LD-1 compound (as summarized in Table 2)
ensures its application in an integrated optoelectronic device.
As an example, OLET, which is possibly the minimized
integrated optoelectronic device and also one of the promising
device structures for study of EPOLs, was further investigated.
Figure 4a shows the schematic image of the LD-1-based OLET
where a vacuum-deposited LD-1 thin film is used as the
emitting layer and N,N′-bis(naphthalen-1-yl)-N,N′-bis (phe-
nyl)-benzidine (NPB) is the hole injection layer and (3,3′-[5′-
[3-(3-pyridinyl)phenyl][1,1′:3′,1″-terphenyl]-3,3″-diyl]-

Table 2. Key Optoelectronic Properties of the LD-1 Compound in a Single Crystal State

material
λabs
(nm)

λem
(nm) PLQY

λASE
(nm)

gain
(cm−1)

loss
(cm−1)

Pth
Laser

(μJ cm−2) Q
mobility

(cm2 V−1 s−1)
VT
(V) Ion/off

LD-1 353 407 60.3% 407 48 5.29 71 [390 nm] 3100 [390 nm] 0.25 6 106

53 [410 nm] 2700 [410 nm]

Figure 4. (a) Schematic of the LD-1 based OLET device. (b) Energy level diagram of graphene, NPB, LD-1, and TmPypB and the thickness of
each layer used in the device. (c) Typical optical and electrical output characteristics of the LD-1 OLET. (d) The color-coded images of LD-1-
OLET extracted from light emission captured by CCD.
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bispyridine) (TmPypB) is the electron injection layer,
respectively. A vertical OLET structure was adopted here
with the consideration of its intrinsically short conducting
channel for high current density and feasible incorporation of
optical configuration and distributed feedback geometry for
efficient electroluminescence performance and or initiating
lasing.3,45 Figure 4b shows the energy alignment of NPB, LD-1,
TmPypB, and the source electrode of graphene. Due to the
tunable Fermi level of graphene and thus the Schottky barrier
between bottom graphene and the NPB hole injection layer
under negative and positive gate voltages, the OLET device
can be operated in the on and off states (Figure S16).
Furthermore, using other typical electron transporting
materials, 1,3,5-tris(2-N-phenylbenzimidazolyl)benzene
(TPBi) replaces TmPypB, another device structure of Si/
SiO2/graphene (gate)/NPB/LD-1/TPBi/LiF/Al/Ag was also
constructed in the experiment. These two devices demon-
strated a similar electroluminescence phenomenon with strong
emission. Typical electrical and optical output characteristics of
LD-1 OLETs (Figure 4c) demonstrate a clear and consistent
correlation between the current density and emitting light
output power, suggesting the good tunability of such a device
under applied gate voltages. With an applied VDS of −20 V and
VGS of −60 V, a current density of around 32 mA cm−2 was
obtained and strong blue electroluminescence was observed, as
shown in Figure 4d with uniform emitting character on the
overall active region. The intensity of electroluminescence
spectra could be obviously increased along with the increase of
negative VG (Figure S17), which is consistent with that of the
PL spectrum of LD-1 thin films (Figure S18) with different
relative intensity for emission peaks, probably due to the
complex effects induced by different molecular packing
structures, the optical resonator effect, and the interface effect
in the electrically driven electroluminescent devices. In
addition, compared to molecules in solution,46 LD-1 molecules
in the single crystal state show relatively good stability under
both electrical field and 355 nm pulse laser, which is important
for potential device applications. More deep research works are
still needed in the future with the emphasis of constructing the
appropriate device geometry with an optimized molecular
packing structure, high-quality interface contact, integration of
photonic structure, and pumping the devices with an electrical
pulse signal.29,47−51

■ CONCLUSIONS
In conclusion, an organic laser molecule, LD-1, was designed
and synthesized by introducing phenyl units into the emissive
fluorene core via a rotational carbon−carbon bond. Efficient
charge transport with a carrier mobility of 0.25 cm2 V−1 s−1 and
strong solid-state emission with a PLQY of 60.3% are
demonstrated. Moreover, its single crystals exhibit a unique
ASE phenomenon with outstanding deep-blue laser character
of low thresholds of 71 and 53 μJ cm−2 and high quality (Q)
factor of ∼3100 and ∼2700 at emission peaks of 390 and 410
nm, respectively, by WGM resonator. As an example of LD-1
in integrated optoelectronic device application, OLET based
on LD-1 was demonstrated. The importance of this work is
that (i) we present a superior organic optoelectronic
compound, LD-1, that well simultaneously integrates high
charge carrier mobility, strong photoluminescence, excellent
lasing character, as well as rare and commendable deep-blue
optical property; (ii) it opens a door for further developing a
series of more efficient organic laser semiconductors toward

compact, low-cost display, and laser technology. More
systematic research works are ongoing, and we believe much
higher performances would be expected in the future by further
rational molecular design and device optimization.
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