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ABSTRACT
In this work, we propose a new method to calculate molecular nonradiative electronic relaxation rates based on the numerically exact time-
dependent density matrix renormalization group theory. This method could go beyond the existing frameworks under the harmonic approx-
imation (HA) of the potential energy surface (PES) so that the anharmonic effect could be considered, which is of vital importance when the
electronic energy gap is much larger than the vibrational frequency. We calculate the internal conversion (IC) rates in a two-mode model with
Morse potential to investigate the validity of HA. We find that HA is unsatisfactory unless only the lowest several vibrational states of the lower
electronic state are involved in the transition process when the adiabatic excitation energy is relatively low. As the excitation energy increases,
HA first underestimates and then overestimates the IC rates when the excited state PES shifts toward the dissociative side of the ground state
PES. On the contrary, HA slightly overestimates the IC rates when the excited state PES shifts toward the repulsive side. In both cases, a
higher temperature enlarges the error of HA. As a real example to demonstrate the effectiveness and scalability of the method, we calculate
the IC rates of azulene from S1 to S0 on the ab initio anharmonic PES approximated by the one-mode representation. The calculated IC rates
of azulene under HA are consistent with the analytically exact results. The rates on the anharmonic PES are 30%–40% higher than the rates
under HA.
Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0052804

I. INTRODUCTION

Nonradiative electronic relaxation (NRER) is an important
process in the photophysics of molecular optoelectronic materials. It
includes an internal conversion (IC) process between the electronic
states of the same spin manifold and an intersystem crossing pro-
cess (ISC) between the electronic states of different spin manifolds.1
For the organic photovoltaics and organic light-emitting system, the
NRER process from the excited state to the ground state is a harmful
process that dissipates electronic energy into vibrational reservoirs
and leads to the reduction in the energy conversion efficiency of
the devices. Considering the important role of NRER in the molec-
ular photophysical processes, how to calculate the rate of NRER
theoretically has always been a hot topic.2–9

Currently, the real-time nonadiabatic dynamics simulation and
the rate theory relying on Fermi’s golden rule (FGR) are the two

main approaches to study the NRER process. Nonadiabatic dynam-
ics directly simulate the nuclear motions over the coupled potential
energy surfaces (PESs) to obtain the real-time population on each
electronic state. Although full-quantum dynamics methods have
made great progress in recent years, it is still limited by the system
size of complex molecules.10–12 Even if less accurate, nonadiabatic
mixed quantum–classical (NA-MQC) dynamics methods provide
a promising way to handle large systems.13–15 One of the intrigu-
ing features of NA-MQC dynamics is that it could combine with
the modern electronic structure calculation in an on-the-fly fash-
ion to simulate ab initio dynamics without requiring a precomputed
global PES, which is necessary for most full-quantum wave-packet
methods.16 Recently, several semiclassical methods have also been
extended to simulate the nonadiabatic dynamics combined with the
mapping strategy.17–20 It should be noted that in these methods, the
anharmonicity of the molecular PES is inherently considered. The
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main shortcoming of the real-time nonadiabatic dynamics meth-
ods to investigate the NRER process is that the accessible timescale
is often limited to several picoseconds. Hence, they are suitable to
describe the ultrafast transition process, such as transition through
the conical intersection where the coupling between the electronic
states is very strong.21 However, the NRER rates of a large portion
of useful fluorescent molecules have timescales of nanosecond or
even longer,22 far beyond what the current real-time nonadiabatic
dynamics methods could accurately reach.

Complementary to the real-time simulation, in the regime
where the coupling between the states is weak, the rate theory
based on FGR has been successfully developed to describe the rel-
atively slower processes. The study on this topic has a long history.
Robinson and Frosch first outlined the harmonic oscillator approx-
imation model to describe the NRER processes 50 years ago.23,24

Afterward, Lin established the framework using the displacement
harmonic oscillator model to treat small polyatomic molecules with
the Duschinsky rotation effect (DRE) (mode-mixing effect) under
the promoting mode approximation.3,25,26 In recent years, Shuai
et al. have developed an analytical formalism called the thermal
vibration correlation function (TVCF) to calculate the NRER rate
in the time domain.5,27–29 Under the harmonic approximation (HA)
of the initial and final electronic PES, this formalism could fully take
the DRE into consideration and give the analytically exact transi-
tion rates. This method has been successfully used to calculate the
NRER rate, including IC and ISC processes of a lot of molecules at
the ab initio level.29,30 However, it is known that HA is only valid
in the low energy regime around the equilibrium geometry, and the
higher the energy, the stronger the anharmonic effect, especially for
the floppy modes. Consequently, HA may not be reliable to describe
the PES of the lower electronic state in the NRER process because
the large electronic excitation energy is dumped into vibrations,
resulting in relatively high vibrational quanta. Some former studies
have attempted to investigate the anharmonic effect on the NRER
rates of molecules in the FGR framework. Ianconescu and Pol-
lak applied the semiclassical initial value representation method to
study the IC rate in a two-mode model with Morse potential.31 They
found that HA is mostly unsatisfactory in a wide parameter regime.
Humeniuk et al. assessed the validity of HA for several coumarin
dyes when predicting the fluorescence quantum yields in solution.32

They found that the accuracy of HA for the radiative decay rate is
remarkable, while HA will underestimate the IC rates. Hence, HA
will lead to an unreliable prediction of fluorescence quantum yield
compared to the experiments. However, their method to deal with
the Morse PES is based on the exact diagonalization and sum-of-
states approach, which is not scalable to large systems. Although
the aforementioned semiclassical method is scalable and seems
promising in a model system, further benchmarking is still required
to verify the universality. Therefore, it is important to develop a
scalable and numerically exact method to calculate NRER rates
beyond HA.

In this work, we propose to calculate the NRER rate with the
numerically exact time-dependent density matrix renormalization
group method (TD-DMRG).33–36 In recent years, TD-DMRG has
emerged as a powerful method to simulate large-scale full-quantum
dynamics,37–44 such as electronic spectroscopy of molecular aggre-
gates, real-time internal conversion in pyrazine, and carrier mobility
in one-dimensional molecular crystals. There are several advantages

of TD-DMRG compared to the other numerical methods: (i) The
accuracy could be systematically improved by a single parameter.
(ii) The Hamiltonian that can be handled is flexible once it could
be represented in a sum-of-products (SOP) form,45,46 and thus,
TD-DMRG could handle both model anharmonic PES and PES of
real molecules after fitting or re-fitting to an SOP form.47,48 (iii) The
scaling of computational cost is polynomial with the system size, and
thus, it is scalable for polyatomic molecules. (iv) The time evolution
of the wavefunction (at zero temperature) and density matrix (at
finite temperature) could be simulated in the same framework.49,50

These advantages make TD-DMRG a suitable method to calculate
the molecular NRER rates.

The remaining sections of this paper are arranged as follows: In
Sec. II, the Hamiltonian and the TD-DMRG method are described.
In Sec. III, first, the IC rates of a two-mode model system with Morse
potential are investigated to assess the validation of HA at different
circumstances. Unlike the harmonic potential, the IC rate with the
Morse potential is not analytically solvable. Second, as a real exam-
ple to demonstrate the effectiveness and scalability of the method,
the IC rates of azulene on the ab initio anharmonic PES approx-
imated by the one-mode representation are calculated. The rates
calculated under HA are also compared with the analytically exact
results. Finally, the conclusion is presented in Sec. IV.

II. THEORY
A. Hamiltonian and transition rate

The molecular Hamiltonian of two uncoupled electronic states
can be expressed as Eq. (1), where the mass-weighted coordinates
ql are used. The potential energy operator is expanded by the two
adiabatic electronic states ∣ψi⟩ and ∣ψ f ⟩,

Ĥ0 =
N

∑

l=1

p̂2
l

2
+ [

V f (q1, q2, . . . , qN) 0
0 Vi(q1, q2, . . . , qN)

]. (1)

N is the total number of vibrational coordinates in the system. V i/f is
the (semi-)global PES of the initial/final electronic state in the tran-
sition process. To set up the Hamiltonian for a specific molecule,
the difficulty is how to obtain the PES V i/f . Even nowadays, it is still
a hard task to obtain a (semi-)global PES for polyatomic molecules
with more than 20 atoms. For large systems, the high-order Taylor
expansion of the PES at the equilibrium geometry is often used to
calculate the anharmonic frequencies.51,52 However, it is known that
high-order Taylor expansion often has artificial “holes” on the PES,
which is disastrous for the variational approaches such as DMRG.
The cut-high dimensional model representation (cut-HDMR) or the
so-called n-mode representation (n-MR) method53,54 can partially
solve this problem. Hence, we use n-MR to approximate the PES of
real molecules below. n-MR approximates the exact potential in a
hierarchical manner. The following equation shows 2-MR of PESs:

V(q1, q2, . . . , qN) = V(0)(qref
) +∑

i
V(1)(qi; qref

i )

+∑

i<j
V(2)(qi, qj; qref

ij ) + ⋅ ⋅ ⋅ , (2)

where
V(1)(qi; qref

i ) = V(qi; qref
i ) − V(0)(qref

), (3)
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V(2)(qi, qj; qref
ij ) = V(qi, qj; qref

ij ) − V(1)(qi; qref
i )

− V(1)(qj; qref
j ) − V(0)(qref

). (4)

V (0)
(qref
) is the energy at the reference point qref, which is com-

monly chosen at the equilibrium point. V(qi; qref
i ) is the one-

dimensional (1D) cut of the PES, which only includes anharmonicity
within a single mode and (qi; qref

i ) indicates that only qi is allowed to
be different from the reference point. V(qi, qj; qref

ij ) is the 2D cut of
the PES, which also includes mode-coupling. In V (1) and V (2), all the
low order terms are excluded to avoid the double-counting. When
n = N, the hierarchical expansion is exact. In practice, it is usu-
ally found that low order n-MR has already been accurate enough.
One typical way to obtain n-MR is to compute the potential energy
values on a set of grid points and then interpolate or fit functions
accordingly. With the low order mode representation terms, it is
convenient to convert them into the operators with an SOP format.55

Under HA, this difficulty in constructing the (semi-)global PES
is bypassed, and only two normal mode analyses at the equilibrium
geometry are required. The PES can be simplified with the normal
coordinates,

Vi/f =∑
l

1
2
ω2

i/f ,lq
2
i/f ,l + V(0)i/f . (5)

ωi/f ,l is the harmonic frequency of the lth normal mode. The nor-
mal coordinates qi/f of the initial and final states are connected
by the Duschinsky rotation matrix S and the normal-mode pro-
jected displacement Δq as Eq. (6). The method to calculate these two
parameters at the ab initio level has been well established,28,56,57

q f ,m =∑
l

Smlqi,l − Δq f ,m. (6)

The perturbation operator that couples the two electronic states is
denoted as Ĥ1. In the IC process, Ĥ1 is the first order nonadiabatic
coupling operator,

Ĥ1 =∑
m
(⟨ψi∣p̂m∣ψ f ⟩∣ψi⟩⟨ψ f ∣ + h.c.)p̂m. (7)

In the ISC process, Ĥ1 is the spin–orbit coupling operator,

Ĥ1 = ⟨ψi∣V̂SOC∣ψ f ⟩∣ψi⟩⟨ψ f ∣ + h.c. (8)

When the coupling is weak, it is appropriate to calculate the transi-
tion rate between the two electronic states with FGR,

WT =
2π
̵h ∑i, f

Pi∣H1,i f ∣
2δ(E f − Ei). (9)

Pi is the Boltzmann distribution of the initial state i at temperature
T. We calculate WT in the time domain by Fourier transform of
the Dirac function [Eq. (10)]. Hence, the key to calculate the rate is
to calculate the time correlation function (TCF) shown in Eq. (12),
where β = (kBT)−1 and Z is the partition function,

δ(E f − Ei) =
1

2π̵h∫
∞

−∞

e−i(E f −Ei)t/̵h dt, (10)

WT =
1
̵h2∫

∞

−∞

⟨Ĥ1(t)Ĥ1⟩T dt, (11)

⟨Ĥ1(t)Ĥ1⟩T = Tr(
1
Z

e−βĤ0 eiĤ0t/̵hĤ1e−iĤ0t/̵hĤ1). (12)

At T = 0, the TCF can be further simplified to the following equa-
tion:

⟨Ĥ1(t)Ĥ1⟩ = eiE0t/̵h
⟨0∣Ĥ1e−iĤ0t/̵hĤ1∣0⟩, (13)

where ∣0⟩ is the lowest eigenstate of the initial PES. In this work, we
focus on the rate of the IC process with the nonadiabatic coupling
operator as given in Eq. (7). However, the rate of the ISC process
can be calculated in the same manner. For IC with the Condon
approximation,

∣H1,i f ∣
2
= ∣⟨ϕi∣⟨ψi∣Ĥ1∣ψ f ⟩∣ϕ f ⟩∣

2
=∑

m,n
I∗mIn, (14)

Im = ⟨ψi∣p̂m∣ψ f ⟩⟨ϕi∣p̂m∣ϕ f ⟩, (15)

where ϕi/f is the vibrational wavefunction. From Eq. (14), we can
find that ∣H1,if ∣

2 is a summation over two parts: diagonal terms with
n = m and off-diagonal terms with n ≠ m. If the vibrational degrees
of freedom (DoFs) are uncoupled, Im can be further simplified as

Im = ⟨ψi∣p̂m∣ψ f ⟩⟨χi(qm)∣p̂m∣χ f (qm)⟩∏
l≠m
⟨χi(ql)∣χ f (ql)⟩, (16)

where χ(qm) is the eigenstate of a single DoF qm.

B. TD-DMRG method
In TD-DMRG, the wavefunction ansatz is

∣Ψ⟩ =∑
{σ}

Cσ1σ2 ⋅ ⋅ ⋅σN ∣σ1σ2 ⋅ ⋅ ⋅ σN⟩ (17)

= ∑

{a},{σ}
Aσ1

a1 Aσ2
a1 ,a2 ⋅ ⋅ ⋅A

σN
aN−1 ∣σ1σ2 ⋅ ⋅ ⋅ σN⟩, (18)

where ∣σi⟩ is the orthonormal primitive basis set for each DoF. N
is the total number of DoFs in the system. As the full-rank coeffi-
cient Cσ1σ2 ⋅ ⋅ ⋅σN is approximated as the product of a chain of rank-3
matrix Aσi

ai−1 ,ai , this ansatz is called a matrix product state (MPS).50

The dimension of ai is called the (virtual) bond dimension, denoted
as MS. It is worth noting that the accuracy of an MPS can be system-
atically improved with MS. The dimension of σi is called the physical
bond dimension, denoted as d. In this work, we use the simple har-
monic oscillator basis to expand each DoF. If necessary, the discrete
variable representation (DVR)58 is used to approximate the matrix
elements of potential energy operators, such as the Morse-type oper-
ator. The details are given in the supplementary material. Similar to
the wavefunction, a common operator Ô can also be represented in
the matrix product form, called the matrix product operator (MPO),
as shown in the following equation:

Ô = ∑

{w},{σ},{σ′}
Wσ′1σ1

w1 Wσ′2σ2
w1 ,w2 ⋅ ⋅ ⋅W

σ′NσN
wN−1

× ∣σ′1σ
′

2 ⋅ ⋅ ⋅ σ
′

N⟩⟨σNσN−1 ⋅ ⋅ ⋅ σ1∣. (19)

With MPO, it is convenient to represent Ô∣Ψ⟩ as another enlarged
MPS with bond dimension MOMS,
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Ô∣Ψ⟩ = ∑

{w,a},{σ′}
A′σ

′
1
{w,a}1

A′σ
′
2
{w,a}1 ,{w,a}2

⋅ ⋅ ⋅A′σ
′
N
{w,a}N−1

× ∣σ′1σ
′

2 ⋅ ⋅ ⋅ σ
′

N⟩,

(20)
where

A′σ
′
i
{w,a}i−1 ,{w,a}i

=∑

σi

Wσ′i σi
wi−1 ,wi A

σi
ai−1 ,ai . (21)

In Eq. (13), the initial state ∣0⟩ at zero temperature can be obtained
through the typical DMRG ground state algorithms by iteratively
optimizing each local matrix A.34,50 At finite temperature, to obtain
the thermal equilibrium density matrix ρβ = e−βĤ0

Z(β) for a canonical
ensemble, the imaginary-time Schrödinger equation is integrated
from τ = 0 to τ = β/2,

−
∂

∂τ
ρ(τ) = Ĥ0ρ(τ). (22)

The initial state ρ(0) at infinitely high temperature (β = 0) is a locally
maximally entangled state, which is easily represented as an MPO
with MO = 1,

ρ(0) =∏
i
∑

σi

1
√

d
∣σi⟩⟨σi∣. (23)

ρ(τ) is normalized under condition ⟨⟨ρ(τ)∣ρ(τ)⟩⟩
= Tr(ρ(τ)†ρ(τ)) = 1 after each step of time-evolution. There-
fore, ρ(β/2) = e−βĤ0/2

/

√

Z(β) = ρ1/2
β . Hence, the TCF in Eq. (12)

can be re-expressed as

C(t) = Tr(ρ1/2
β eiĤ0t/̵hĤ1e−iĤ0t/̵hĤ1ρ1/2

β ). (24)

This method can equivalently be formulated according to the ther-
mal field dynamics method, also known as the purification method,
by introducing an auxiliary space.49,50

There are many time evolution schemes to propagate the wave-
function and density matrix according to the Schrödinger equa-
tion along the real-time or imaginary-time axes, and they are thor-
oughly compared in Refs. 59 and 60. In this work, we adopt the
time-dependent variational principle-based evolution schemes. The
variable-mean-field (VMF) scheme is used to propagate the wave-
function with matrix unfolding61 and adaptive Dormand–Prince’s
5/4 Runge–Kutta algorithm. The second-order projector-splitting
(PS) scheme is used to propagate the density matrix for higher effi-
ciency. Readers are referred to our former works for more details
about the derivation and implementation.60 The computational cost
of a single time-step is O(N(M2

S M2
Od2
+M3

S MOd +M3
S d2
)) for the

former and O(N(M2
S M2

Od4
+M3

S MOd2
)) for the latter, which are

both polynomial with the system size. All the calculations in Sec. III
are carried out with our in-house code Renormalizer.62

III. RESULTS AND DISCUSSIONS
A. Two-mode model with Morse potential

In this section, we adopt a minimal two-mode model with
Morse potential as in Ref. 31 to investigate the anharmonic effect
on the internal conversion rate from the excited state to the ground
state in which the PES of the ground state is characterized by two
independent Morse potentials along each vibrational DoF, while the
PES of the excited state is still harmonic (typically, the excited state is

prepared at low energies where a harmonic approximation is reason-
able). In addition, there is no mode mixing between the two PESs.
The potential operator is

Vi = Ve = ∑
l=1,2

1
2
ω2

e,lq
2
e,l + V(0)i , (25)

V f = Vg = ∑
l=1,2

Dl(1 − e−αlqg,l
)

2
+ V(0)f , (26)

qe,l = qg,l − Δql, (27)

V(0)i − V(0)f = Ead, (28)

where Ead is the adiabatic excitation energy. The two parameters
to define a Morse potential are the dissociation energy D and the
“width” of the potential well 1/α. A schematic diagram of the poten-
tial energy curve along one coordinate is shown in Fig. 1. A pos-
itive/negative Δq represents that the excited state PES is shifted
toward the dissociative/repulsive side of the ground state PES. Even
though this model seems simple, unlike the harmonic potential, the
internal conversion rate with the Morse potential cannot be calcu-
lated analytically. To construct the MPO for the system Hamilto-
nian, we use the symbolic method developed in our former work46

to first construct the symbolic MPO and then expand every oper-
ator on the primitive basis to obtain a numerical one. The site
ordering is another key aspect of a DMRG calculation. Although it
was discussed to some extent in some former studies for vibronic
models,41,43 what is the optimal ordering is still unclear. In this
calculation, the site ordering is e, q1, q2.

In order to compare with the results in Ref. 31, the same
parameters are adopted here, D1 = D2 = D = 5.52 eV and α1 = α2 = α
= 2.23 amu−1/2Å−1 (0.0277a.u.). Under HA, the harmonic frequency

FIG. 1. A schematic diagram of the potential energy curve of the two-mode model
along one coordinate. The black curve is the Morse potential Vg = D(1 − e−αq

)
2

of the ground state. The red curve is the harmonic approximation of the Morse
potential at the equilibrium position. The blue curve is the harmonic potential of the
excited state.
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at the equilibrium position is ωg,1 = ωg,2 = ωg =
√

2α2D
= 3868 cm−1. The harmonic excited state PES has ωe,1 = ωe,2
= ωe = 774 cm−1. In addition, the displacements are the same for
the two DoFs Δq1 = Δq2 = Δq. The derivative coupling along each
coordinate is set to be the same ⟨ψe∣

∂
∂q1
∣ψg⟩ = ⟨ψe∣

∂
∂q2
∣ψg⟩ = C.

Hence, the generalized internal conversion rate is defined as
kic =WT/C2 using the constant C2 as the unit. As in Ref. 31, the
TCF is multiplied by a Gaussian type broadening factor to make it
converge after a finite period of time,

WT =
1
̵h2∫

∞

−∞

⟨Ĥ1(t)Ĥ1⟩T e−
σ(Ee)2 t2

2h̵2 dt. (29)

σ(Ee) is chosen to represent the mean energy interval between the
successive vibrational states on the ground state,

N(Ee) = Tr[Θ(Ee − Ĥg)] ≈
1
2

⎡
⎢
⎢
⎢
⎢
⎣

(
Ee
̵hωg
)

2

+
Ee
̵hωg

⎤
⎥
⎥
⎥
⎥
⎦

, (30)

σ(Ee) =
dEe

dN
, (31)

where Θ is the Heaviside step function and N(Ee) is the number
of quantum states below Ee. Ee is the lowest energy of the excited
vibronic state. As in Ref. 31, the actual σ(Ee) used in all the calcu-
lations is seven times the value defined in Eqs. (30) and (31). Since
in the current model the two modes are not coupled or mixed, the
formal propagator eĤg/eτ can be exactly represented as an MPO with
MO = 1 (actually no matter what the system size is in this model),
and the initial state ∣0⟩ at zero temperature or ρ(0) at finite temper-
ature is also a Hartree product state with MS = 1. In addition, Ĥ1
could be represented as an MPO with MO = 2. Therefore, during the
time-evolution, the time-dependent wavefunction in Eqs. (13) and
(24) could be exactly represented as an MPS with at least MS = 2
(the numerical results with different MS are shown in Fig. S1 of

the supplementary material). It should be mentioned that in
Ref. 31, the Hamiltonian includes a momentum coupling term
p̂1p̂2/M. Since this term is found to have only a minor effect on
kic, it is neglected in this work. In the subsequent numerical results,
the time step is 8 a.u. (about 0.2 fs). The total simulation time is
240 a.u. to obtain the TCF using TD-DMRG, and then, kic is cal-
culated according to Eq. (29). We note that in Ref. 31, only the
diagonal terms n = m of the summation in Eq. (14) are included
to calculate kic and the off-diagonal terms n ≠ m are all neglected.
This approximation is similar to the widely known promoting mode
approximation,3 which is valid in the case that only one mode called
the promoting mode has an appreciable derivative coupling and its
displacement is approximately zero. However, considering that this
approximation may not always be suitable for all systems, we include
the off-diagonal terms when calculating the internal conversion
rates.

First, we consider the zero temperature case in which the initial
state is the lowest vibronic state of the excited state with zero vibra-
tional quanta in each normal coordinate. With Δq = 0.7/α fixed, kic
with different Ead is shown in Fig. 2(a) in which only the diago-
nal terms in Eq. (14) are included. The results of TD-DMRG have
already converged with physical bond dimension d = 60 (the largest
quanta of the harmonic oscillator basis) and are consistent with the
results of Ref. 31 by the semi-classical initial value representation
approach. However, Fig. 2(b) shows that the off-diagonal terms are
also very important in this model, which increase kic in some regimes
and decrease it in the other regimes according to the different Ead.
This difference can be attributed to that the off-diagonal terms have
different signs when the final vibronic state varies. Figure 3 shows
the relative size of the matrix elements of the off-diagonal terms
to that of the diagonal terms 2I1I2/(∣I1∣

2
+ ∣I2∣

2
), whose value is

between −1 and 1.
Since the Morse potential is asymmetrical unlike the harmonic

potential, the direction of the relative displacement Δq between the
two PESs matters. Figure 4 shows the 2D contour of the ratio of

FIG. 2. (a) The dependence of k ic on the adiabatic excitation energy Ead/D at zero temperature calculated by TD-DMRG with different sizes of primitive basis sets. Only
the diagonal terms in Eq. (14) are included. The results in Ref. 31 are also plotted for comparison (black line). (b) k ic with or without the off-diagonal terms in Eq. (14)
calculated by TD-DMRG with d = 60. (The displacement is Δq = 0.7/α. The virtual bond dimension used is MS = 4. Morse: full treatment of the anharmonic Morse PES.
HA: harmonic approximation of the Morse potential.)
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FIG. 3. The relative size of the matrix elements of the off-diagonal terms to that
of the diagonal terms 2I1I2/(∣I1∣2 + ∣I2∣2) defined in Eqs. (14) and (15) at zero
temperature. The vibrational wavefunction ϕg(q1, q2) = χHA

ng,1
(q1)χHA

ng,2
(q2) of the

final state is characterized by two quantum number—ng,1 and ng,2—which are both
ranging from 0 to 11.

kMorse
ic on the Morse potential to kHA

ic on the harmonic poten-
tial with different displacement Δq and adiabatic excitation energy
Ead at temperature T = ωg/5. At three representative displacements
Δq = 0.7/α, 0/α, and −0.52/α, kic with different temperatures is
shown in Figs. 4(b)–4(d). The convergence of the primitive basis
set is shown in Figs. S2–S4 of the supplementary material. It is
obvious that HA could give accurate results when Ead is relatively
small (Ead/D ∼ 0). In this regime, only the vibronic state at the bot-
tom of the ground state PES is involved in the transition process.
For this low-energy state, HA is valid as expected. This situation
would be encountered in the charge/energy transfer process between
molecules of the same kind and the ISC process in which the ener-
gies of the singlet and triplet state are very close such as the thermally
activated delayed fluorescence system.63 However, higher energy
and a larger positive displacement make the HA-valid regime much
narrower. In the regimes that HA obviously fails, two trends can be
found within the current model:

1. When the excited state PES shifts toward the dissociative side
of the ground state PES [αΔq > 0, the top half of Fig. 4(a)],
HA will first underestimate kic and then overestimate kic as
Ead increases. In addition, kic with the Morse potential drops

FIG. 4. (a) The ratio of the internal conversion rate on the Morse potential with respect to that under HA with different displacements and adiabatic excitation energies.
The temperature is T = ωg/5. (b)–(d) The dependence of k ic on the adiabatic excitation energy calculated by TD-DMRG with different displacements, (b) Δq = 0.7/α, (c)
Δq = 0/α, and (d) Δq = −0.52/α, at different temperatures (T = 0,ωg/5, 2ωg/5), with or without HA. The physical and virtual bond dimensions in all these calculations
are d = 100 and MS = 4. The comparison of the results with different d is shown in the supplementary material.

J. Chem. Phys. 154, 214109 (2021); doi: 10.1063/5.0052804 154, 214109-6

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp
https://www.scitation.org/doi/suppl/10.1063/5.0052804
https://www.scitation.org/doi/suppl/10.1063/5.0052804


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

much rapidly as Ead increases compared to that with harmonic
potential once the peak is passed [Figs. 4(b) and 4(c)].

2. When the excited state PES shifts toward the repulsive side of
the ground state PES [αΔq < 0, the bottom half of Fig. 4(a)],
HA slightly overestimates kic [Fig. 4(d)].

To examine the generality of the trends described above, we also cal-
culate kic with D′ = D, α′ = 2/3α and D′ = 4/9D, α′ = α. The similar
2D contours shown in Fig. 4(a) are shown in Fig. S5 of the sup-
plementary material. The trends are qualitatively the same. Besides
these two trends, in both cases, the higher the temperature, the
greater the error of HA.

Two fundamental differences between the vibrational wave-
functions of Morse potential χMorse and harmonic potential χHA with
the same quantum number n may explain the two trends. First,
the amplitude of χMorse is larger than χHA on the dissociative side,
while smaller on the repulsive side, as shown in the middle panels
of Fig. 5(a) (n = 3) and Fig. 5(b) (n = 10). Second, by comparing
these two panels, χMorse spreads very fast to the dissociative side as
the quantum number increases, while χHA with the same quantum
number is relatively localized. Consequently, when αΔq > 0 and the
quantum number of the final vibrational state is small (Ead is small),
the larger amplitude of χMorse in the region of the initial vibrational
wavefunction χe (n = 0) will result in a larger overlap SMorse

g,e and thus
a larger Franck–Condon (FC) factor as shown in the upper panel
of Fig. 5(a) (n = 3) and so is the transition rate kic. As the quan-
tum number increases, χMorse quickly spreads to the dissociative side
and the amplitude of χMorse in the region of χe decays much more
rapidly once the large head of χMorse crosses χe compared to the more
localized χHA, resulting in a smaller FC factor as shown in the upper
panel of Fig. 5(b) (n = 10). Quantitatively, SMorse

g,e decreases from 0.4
to 0.025, while SHA

g,e only decreases from 0.3 to 0.2 when the quantum
number increases from 3 to 10. In addition, χMorse has more nodes

than χHA with similar excitation energy, leading to a more serious
phase cancellation when calculating the overlap. On the repulsive
side, though χMorse is also localized, the amplitude of χMorse is smaller
than that of χHA, resulting in a smaller overlap as shown in the lower
panel of Figs. 5(a) and 5(b). To understand the temperature effect,
Fig. 6 shows that the square of matrix element ⟨χe(q)∣ ∂∂q ∣χg(q)⟩ in
Eq. (16) (playing the role as a prefactor of the FC factor) is rela-
tively larger for the initial state with higher vibrational quanta ne.
Therefore, when the thermally populated initial states with higher
vibrational quanta get involved with the temperature, the error of
HA is significantly larger.

To show the computational complexity of the proposed method
with the system size, we increase the system size from 2 to 20 (see
the supplementary material for details). Figure S6 shows that the
computational cost is linearly dependent on the system size for the
current uncoupled model without mode mixing. If the bi-mode cou-
pling term ∑l<kΓq2

l q2
k is considered, both the size of MPO and the

required MS will increase. Hence, the computational cost almost
grows cubically with the system size.

B. IC rate of azulene
The proposed method can be applied to the real molecules if

the PES is available. As an example to demonstrate the effective-
ness and scalability of the method in real molecules, in this section,
we calculate the internal conversion rate of azulene from the S1
state to the S0 state. Azulene has often been used as a prototypi-
cal system to benchmark new methods.7,28 Here, two types of PES
are considered: (i) The harmonic PES expanded around the respec-
tive equilibrium geometry of the ground state and excited state. (ii)
The ground state PES is approximated by 1-MR along each normal
coordinate (the excited state is still considered to be harmonic). As
introduced above, 1-MR includes the anharmonicity of 1D cut of
the PES along each coordinate. The single point energy, equilibrium

FIG. 5. (a) Middle panel: the vibrational wavefunction of the ground state with the quantum number n = 3 on the Morse potential (solid black) and approximated harmonic
potential under HA (solid red). Upper panel: the lowest vibrational wavefunction of the excited state with Δq = 0.7/α (solid blue) and the cumulative overlap between the
initial and final wavefunctions (dashed black and red lines). Lower panel: same as the upper panel but with Δq = −0.52/α. (b) same as (a) but the quantum number of the
vibrational state of the electronic ground state is n = 10.
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FIG. 6. The square of the matrix elements ⟨χe(q)∣ ∂∂q
∣χg(q)⟩ between different initial vibrational states of the electronic excited state (distinguished by vibrational quanta

ne) and series of final vibrational states of the electronic ground state [distinguished by the energy E(χg,n)] on (a) Morse potential and (b) harmonic potential under HA.
Each triangle, inverted triangle, or circle denotes a state with lines as a guide to the eye. The results are calculated through exact diagonalization. The displacement is
Δq = 0.7/α.

geometry, and normal mode analysis of the ground state and excited
state of azulene are calculated by density functional theory (DFT)
and time-dependent DFT at the B3LYP/6-31G(d) level in Gaussian
16.64 The number of normal modes of azulene is 48. The Duschinsky
rotation matrix S and normal mode projected displacement Δq as in
Eq. (6) are calculated by the Molecular Material Property Prediction
Package (MOMAP).65 The 1-MR PES is constructed by the adap-
tive density-guided approach (ADGA) implemented in MidasCpp66

developed by Sparta et al.67 A total of 741 ab initio points are calcu-
lated, and the 1D cut of the PES is fitted with polynomial functions
up to the 12th order. The 48 1D PES cuts are shown in Figs. S9–S12
of the supplementary material. It is clear to see that azulene is a semi-
rigid molecule with a well-defined minimum corresponding to the
equilibrium geometry. In the TD-DMRG calculations, the coordi-
nates used are the normal coordinates of the ground state. They are
arranged in the ascending order of harmonic frequency. The site of
the electronic DoF is put to the middle of the chain. The time step
is 0.25 fs and the total time of simulation is 425 fs. The primitive
basis for each DoF is the harmonic oscillator basis up to 20 quanta.
A Lorentzian broadening factor 100 cm−1 is applied to make the
time-integration of TCF converge.

For the harmonic PES, the TVCF method5,27 (implemented
in MOMAP65) is analytically exact and thus serves as a reference
here. For comparison, the same time step and total evolution time
are used in TVCF. The TCF C(t) in Eq. (24) calculated by TVCF
and TD-DMRG with different bond dimensions MS are shown in
Fig. 7. The results with MS = 2 (blue dashed line) deviate from the
exact value after 40 fs and thus are not accurate enough to calcu-
late kic (see Table I). The results with MS = 20 (red dashed line)
are consistent with the exact values at the resolution scale shown in
Fig. 7. The transition rates kic are listed in Table I. The analytically
exact value is 2.17 × 1010 s−1 at 0 K and 2.44 × 1010 s−1 at 300 K.
The results of TD-DMRG converge very fast with MS, and MS = 20
could obtain a quantitatively accurate rate—2.11 × 1010 s−1 at 0 K
and 2.32 × 1010 s−1 at 300 K. The computational wall-clock time for

the whole simulation with MS = 20 is 35 min at 0 K and 6 h 33 min
at 300 K with 4 Intel Xeon Gold 5115 central processing unit (CPU)
cores and 1 NVIDIA V100 graphics processing unit (GPU) card.

Although on the harmonic potential the TD-DMRG method is
definitely much more expensive than the TVCF method, TD-DMRG
could go beyond HA and the cost is not expected to increase very
much depending on the specific form of the anharmonic PES. For
the anharmonic PES of azulene approximated by 1-MR, the results
with different MS are also listed in Table I. The results of TD-DMRG
still converge very fast with MS, and at MS = 60, kic is 2.89 × 1010 s−1

at 0 K and 3.37 × 1010 s−1 at 300 K, which is roughly 30%–40% higher
than the results of the harmonic PES. The results are consistent

FIG. 7. The real and imaginary part of the time correlation function C(t) at T = 0 K
and T = 300 K calculated by the analytically exact TVCF method implemented in
MOMAP65 (black solid line) and TD-DMRG with bond dimension MS = 2 (blue
dashed line) and MS = 20 (red dashed line).
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TABLE I. The internal conversion rate k ic of azulene from the S1 state to the S0 state with the harmonic PES and with the
anharmonic 1-MR PES calculated by TD-DMRG with different bond dimensions MS. The analytically exact results with the
harmonic PES calculated by the TVCF are also listed.

kic (×1010 s−1
) at 0 K kic (×1010 s−1

) at 300 K

Method HA 1-MR HA 1-MR

TVCF 2.17 ⋅ ⋅ ⋅ 2.44 ⋅ ⋅ ⋅

TD-DMRG

MS = 2 0.44 1.08 1.31 2.05
MS = 5 1.30 1.98 1.85 2.72

MS = 10 1.98 2.69 2.21 3.13
MS = 20 2.11 2.83 2.32 3.27
MS = 40 2.15 2.88 2.40 3.35
MS = 60 2.16 2.89 2.41 3.37

with the findings in the two-mode model above. For the multi-mode
molecule in the weak coupling limit with all the Huang–Rhys factor
Si < 1 (Fig. S13 shows Si of azulene), it has been known that the most
probable final states prefer to simultaneously excite several vibra-
tional modes to accept the electronic energy together rather than
excite only one mode to a very high energy level.68 Therefore, for
each mode, the energy received is in the small to medium regime in
which the rate on the Morse potential is mainly larger than that on
the harmonic potential (Fig. 4). The computational wall-clock time
for the whole simulation with MS = 20 is 26 min at 0 K and 7 h 1 min
at 300 K, which is similar to the harmonic case. This is because the
modes are still independent in the 1-MR PES, and thus, the bond
dimension MO of MPO does not change and the required MS for
the same accuracy is also roughly the same from Table I. When the
2-MR PES is considered, we expect that the cost spent in TD-DMRG
will increase because both MS and MO will increase but will still be
affordable. However, to construct the 2-MR PES for azulene needs at
least 100 000 single point ab initio calculations (assuming ten grids
on each coordinate), which will, in turn, become the bottleneck of
the whole calculation.

IV. CONCLUSION
In this work, we propose to use TD-DMRG to calculate the rate

of the molecular nonradiative electronic relaxation process based on
Fermi’s golden rule. First, we calculate the internal conversion rate
of a two-mode model system with Morse potential and assess the
validity of the harmonic approximation. We emphasize that the off-
diagonal terms neglected in the former studies are also important
to the transition rate, and the harmonic approximation is unsatis-
factory in a large parameter regime unless only the lowest several
vibrational states of the lower electronic state are involved in the
transition process when the adiabatic excitation energy is relatively
low. Since the Morse potential is asymmetrical, the error of the
harmonic approximation strongly depends on the direction of the
shift of the excited state potential energy surface with respect to the
ground state. When αΔq > 0, the harmonic approximation will first
underestimate the IC rate and then overestimate it as the excitation
energy increases. This is due to that the amplitude of the wave-
function on the Morse potential is larger than that of the harmonic
potential in the dissociative side, but the wavefunction spreads
quickly with energy while the harmonic wavefunction is much more

localized. Hence, the Franck–Condon factor between the initial and
final states on the Morse potential is first larger and then smaller than
that under the harmonic approximation. When αΔq < 0, the har-
monic approximation will slightly overestimate the IC rate because
the wavefunction on the Morse potential is also localized on this
side, but the amplitude is smaller. Moreover, higher temperatures
will enlarge the error of the harmonic approximation. Second, we
calculate the internal conversion rate of azulene. Under the har-
monic approximation, the results are consistent with the analytically
exact results calculated by the thermal vibration correlation function
method. On the anharmonic PES approximated by the one-mode
representation, the results are 30%–40% higher than that on the har-
monic PES, indicating that in this semi-rigid system, the anharmonic
effect on the IC process is not very strong. The computational cost
is roughly the same compared to the harmonic case, which demon-
strates the effectiveness and scalability of the current method to be
applied to large polyatomic molecules. It should be mentioned that
though we focus on the rate of the internal conversion process in
the numerical examples in this work, the same approach could also
be used in the calculation of the intersystem crossing rates. Finally,
floppy molecules, such as the aggregation-induced emission sys-
tems,69 may have a significant anharmonic effect on the IC process;
thus, applying the current TD-DMRG method to these systems with
the ab initio anharmonic potential energy surface is worth further
study.

SUPPLEMENTARY MATERIAL

See the supplementary material for the internal conversion
rates kic of the two-mode model calculated by TD-DMRG with dif-
ferent virtual bond dimensions MS, physical bond dimension d, and
different Morse potential parameters. The 1D cuts of the azulene
ground state PES can also be found.
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