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ABSTRACT
Inspired by the formulation of quantum-electrodynamical time-dependent density functional theory (QED-TDDFT) by Rubio and co-
workers [Flick et al., ACS Photonics 6, 2757-2778 (2019)], we propose an implementation that uses dimensionless amplitudes for describing
the photonic contributions to QED-TDDFT electron–photon eigenstates. This leads to a Hermitian QED-TDDFT coupling matrix that is
expected to facilitate the future development of analytic derivatives. Through a Gaussian atomic basis implementation of the QED-TDDFT
method, we examined the effect of dipole self-energy, rotating-wave approximation, and the Tamm–Dancoff approximation on the QED-
TDDFT eigenstates of model compounds (ethene, formaldehyde, and benzaldehyde) in an optical cavity. We highlight, in the strong coupling
regime, the role of higher-energy and off-resonance excited states with large transition dipole moments in the direction of the photonic field,
which are automatically accounted for in our QED-TDDFT calculations and might substantially affect the energies and compositions of
polaritons associated with lower-energy electronic states.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0057542

I. INTRODUCTION

Quantum optics effects on atoms have been extensively
studied during the last several decades,1–9 enabling scientists to
shift atomic energy levels,10,11 tune atomic electronic transition
rates,12–14 and generate quantum systems with atom–atom entan-
gled states.15,16 In contrast, the behavior of molecules in optical
cavities attracted a lot of attention only in recent years.17–23 In par-
ticular, several molecules have been shown to couple strongly to a

quantized radiation field, causing their electronic states to hybridize
with the cavity photon levels to produce superpositions and entan-
glements.2,24,25 The study of such entangled states leads to the estab-
lishment of the field of polariton chemistry, which focuses on the use
of optical cavities to manipulate chemical and photochemical reac-
tivities,23,26–39 modify the intersystem crossing rates,27,28,37,39–41 and
enhance organic molecule light emitting efficiencies.42–50

In principle, a coupled molecule–photon system is best
described by the relativistic quantum field theory (QFT).51
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However, to avoid the computational complexity of QFT, many
non-relativistic and simplified theories have been developed.52

Within the Rabi model, for instance, one adopts a semiclassi-
cal approach that combines a non-relativistic quantum mechani-
cal description for the molecule and a classical description of the
electromagnetic field.53–56 The Pauli–Fierz model was introduced
to provide consistent treatment of the spontaneous emission.57,58

Jaynes and Cummings proposed two other similar quantum models,
which are known as the Jaynes–Cummings (JC) model and rotating-
wave approximation (RWA).59,60 Within both models, the counter-
rotation terms (CRTs) are neglected, which turns out to be a valid
approximation for the resonance and near-resonance conditions
and weak coupling regimes.52,59,60

In the study of polariton chemistry, it has been com-
mon to restrict the description of each electronic system to a
simplified two- or three-state model.23,55,56,61–68 The correspond-
ing input parameters (energy levels and coupling elements),
on which the models would heavily rely, are obtained from
either experiments or first-principles quantum chemistry calcu-
lations. Through employing these models, it has been predicted
that the coupling of molecular systems to quantized radiation modes
could substantially modify the potential energy surfaces and cre-
ate new conical intersections,27,28,40,69 suppress or enhance pho-
toisomerization reactions,47,70–74 increase the charge transfer and
excitation energy transfer rates,52,75–79 accelerate the singlet fission
kinetics,41,80 and even control the chemical reactions remotely.37,81

These observations open up opportunities to use optical cavities to
manipulate chemical and photochemical reactions.

Recently, ab initio quantum mechanical frameworks were pro-
posed to describe interacting electrons and photons.51,63,82–93 Specif-
ically, Rubio and co-workers developed quantum-electrodynamical
density functional theory (QEDFT)82–84,86,89,93–96 and quantum elec-
trodynamics coupled-cluster (QED-CC) theory,97–99 which inherit
an accurate description of the molecular electronic structure from
time-dependent density functional theory, coupled-cluster theory,
equation-of-motion coupled-cluster theory, and other ab initio elec-
tronic structure theories.

In this work, we closely follow the QEDFT method from Rubio
and co-workers.82–84,86,89,91,93–96 Through a slightly modified matrix
formulation of linear-response quantum-electrodynamical time-
dependent density functional theory (QED-TDDFT), we obtain a
Hermitian TDDFT-Pauli–Fierz (TDDFT-PF) Hamiltonian for cou-
pling molecules and cavity photons. This allows us to systemati-
cally examine the effects of CRTs, dipole self-energy (DSE), and the
Tamm–Dancoff approximation (TDA) and to compare the polari-
ton energies to different model Hamiltonian results. We expect that
as the electron–photon coupling strength increases, there might be
(a) a substantial deviation from symmetric Rabi splitting (which
arises from the two-state model Hamiltonian) and (b) significant dif-
ferences in the polariton energy and compositions among various
theoretical models.

This work is organized as follows: The TDDFT-PF formula is
derived in Sec. II B and in Appendixes A and B (with linear-response
and equation-of-motion formulations, respectively), with its no-
DSE, RWA, and TDA variations presented in Sec. II C. Section III
describes our Gaussian atomic basis implementation within the
PYSCF software package.100 Preliminary results on the polariton
states of ethene, formaldehyde, and benzaldehyde molecules in

the optical cavity are reported in Sec. IV, which is followed by a
discussion in Sec. V.

II. THEORY
A. Notation

For a molecule, we will use indices i, j to represent its occu-
pied Kohn–Sham orbitals and a, b to denote its unoccupied (vir-
tual) Kohn–Sham orbitals. The corresponding orbital energies will
be written as εi, εj, εa, and εb. The dipole moment vector in the basis
of these orbitals is

μai = (⟨a∣x̂∣i⟩, ⟨a∣ŷ∣i⟩, ⟨a∣ẑ∣i⟩). (1)

We will use A and B to refer to conventional TDDFT coupling
supermatrices, while X and Y are TDDFT amplitudes.101–108

For an optical cavity with M photon modes, its αth mode of fre-
quency is denoted by ωα. With the long-wavelength approximation,
the corresponding fundamental coupling strength,63,91

λα =

√
1
ϵ0

Sα(r0)ϵα, α = 1, 2, . . . , M, (2)

depends on the transversal polarization vector ϵα. For a Fabry–Pérot
cavity of volume V tot = LxLyLz and with mirror planes perpendicular
to the z-axis, the dimensionless mode function

Sα(r) =
√

2
Vtot

sin(
απz
Lz
) (3)

is evaluated at a chosen reference point r0 for the molecular sub-
system. When there are N identical and non-interacting molecules
with the same orientation, the effective volume of each molecule,
Veff =

Vtot
N , can be used in Eq. (3).27

For each photon mode, the corresponding displacement coor-
dinate and conjugate moment refer to

q̂α =

√
h̵

2ωα
(b̂α + b̂†

α), (4)

p̂α = −i

√
h̵ωα

2
(b̂α − b̂†

α), (5)

with b̂†
α and b̂α being the creation and annihilation operators for the

mode. For convenience, the dot product of the dipole moment of
each virtual-occupied pair and the photon field will be written as

λα
ai = μai ⋅ λα. (6)

B. QED-TDDFT equation within the Pauli–Fierz
Hamiltonian

For a molecule confined in this optical cavity, by making
the Born–Oppenheimer approximation and the long-wavelength or
dipole approximation in the length gauge, its Pauli–Fierz Hamilto-
nian can be written as52,91

Ĥ = Ĥelec +
M

∑
α=1
[

1
2

p̂2
α +

1
2

ω2
α(q̂α −

1
ωα

λα ⋅ ⟨μ̂⟩)
2
] +

M

∑
α=1

jα(t)
ωα

q̂α, (7)
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where the photon modes interact with the expectation value of
molecular dipole moment, ⟨μ̂⟩, and jα(t) = λα ⋅ j(t) is the classical
external current coupling to the αth cavity mode. Note that, in this
“d ⋅ E” formula,52 the expectation value of the dipole moment, ⟨μ̂⟩,
for a time-dependent electronic wavefunction [Eq. (B1)] is coupled
with the photon field, which will be essential in the formulation of
the DSE term in Eq. (B23).

If the electronic Hamiltonian, Ĥelec, is described by the
Kohn–Sham density functional theory, the corresponding TDDFT-
PF equation is shown in Appendixes A and B to be

⎡
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⎢
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⎢
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⎢
⎢
⎢
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⎢
⎢
⎣
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⎥
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. (8)

The derivation in Appendix A closely follows that of Flick et al.’s
matrix formulation of linear-response QED-TDDFT,91 but with
two subtle differences. First, a Hermitian Hamiltonian matrix was
acquired on the left-hand side of Eq. (8). Second, dimensionless
photon amplitudes (M and N) were adopted. In Appendix B, an
equivalent equation-of-motion formulation109 is shown.

In Eq. (8), the electron–electron block contains TDDFT super-
matrices, A and B, as augmented by the DSE terms,52,99

Δai,bj =
M

∑
α=1

λα
aiλ

α
bj, (9)

while the electron–photon and photon–electron blocks are

h̵gα
bj = h̵g̃α

bj =

√
h̵ωα

2
λα

bj, (10)

whereas the photon–photon block is a diagonal matrix,

ωαβ = δαβωα. (11)

Due to the couplings (i.e., the electron–photon and
photon–electron blocks), the Ith eigenvector of the TDDFT-
PF equation, (XI , YI , MI , NI

)
T, contains photonic amplitudes (MI

and NI) in addition to normal electronic amplitudes (XI and YI).
The ortho-normalization condition is

∑
ai
(XI

aiX
J
ai − Y I

aiY
J
ai) +∑

α
(MI

αMJ
α −NI

αNJ
α) = δIJ . (12)

These components could be explained to be the Fourier coefficients
of the time-dependent parameters109–111 (also see Appendixes A
and B).

FIG. 1. A prism of QED-TDDFT methods.

C. A prism of QED-TDDFT methods
The TDDFT-PF formula [Eq. (8)] can be approximated in a

number of ways, as shown in Fig. 1. First, one can invoke the
Tamm–Dancoff approximation (TDA),103 which sets the B + Δ ele-
ments to zero. One then obtains the TDA-PF model,
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. (13)

If the DSE addition, Δ, to matrix A is further removed, one
obtains the TDA-Rabi model,112

⎡
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. (14)

If the counter-rotation terms (CRTs), which are shown as
h̵g̃†, are neglected from Eq. (13), it amounts to the rotating-wave
approximation (RWA),112

⎡
⎢
⎢
⎢
⎢
⎢
⎣

A + Δ h̵g†

h̵g h̵ω

⎤
⎥
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⎥
⎥
⎥
⎦
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X
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⎥
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⎥
⎥
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⎢
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1 0

0 1

⎤
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⎥
⎥
⎥
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X
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⎥
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. (15)

Finally, if both DSE and CRT are neglected in the TDA-
PF formula [Eq. (13)], one arrives at the TDA-Jaynes–Cummings
(TDA-JC) model,

⎡
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⎢
⎢
⎢
⎢
⎣

A h̵g†

h̵g h̵ω
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⎥
⎥
⎥
⎥
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⎥
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⎥
⎥
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⎢
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⎣

1 0

0 1

⎤
⎥
⎥
⎥
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⎣

X

M

⎤
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⎥
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⎥
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. (16)

Clearly, the first-order DSE correction to the energy of the Ith
TDA-JC polariton is always positive,

ΩTDA−RWA
I = ΩTDA−JC

I +
M

∑
α=1
∣λα ⋅ μI ∣

2
+ ⋅ ⋅ ⋅ , (17)
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with the transition dipole moment of the Ith polariton being

μTDA−JC
I =∑

ai
XTDA−JC

I,ai μai. (18)

In contrast, the leading CRT correction to the TDA-JC energy
is second-order and always negative,

ΩTDA−Rabi
I = ΩTDA−JC

I −
M

∑
α=1

g2
α,I

ΩTDA−JC
I + ωα

+ ⋅ ⋅ ⋅ , (19)

where

gα,I =

√ωα

2h̵
(λα ⋅ μTDA−JC

I ) (20)

is the coupling between the Ith excited state and the αth cavity mode.
Note that under the resonance condition (ΩTDA−JC

I = ωα) as well
as gα,I/ωα ≪ 1, the leading CRT contributions are second-order to
gα,I (and, thus, λα). In those cases, the CRT contribution is roughly
1
4 of the DSE term, but with an opposite sign. This is different
from the report from Huo and co-workers,52,113 who found the CRT
contribution to be − 1

2 times the DSE term. This discrepancy will
be explained later in the context of QED-TDDFT results on test
molecules.

As shown in Fig. 1, the TDDFT-Rabi, TDDFT-RWA, and
TDDFT-JC models can be defined in a similar procedure starting
from the TDDFT-PF model. For instance, the TDDFT-JC working
equation would be
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⎢
⎢
⎢
⎢
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⎥
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0 0 1

⎤
⎥
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⎥
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⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

X

Y

M

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (21)

Clearly, if this equation [or its TDA counterpart in Eq. (16)] is recast
in the representation of gas-phase TDDFT (or TDA) eigenstates, it
is reduced to the familiar Jaynes–Cummings model, but coupling all
the excited states to the photon field.

III. COMPUTATIONAL DETAILS
A. Method implementation

The QED-TDDFT methods are implemented in a modified
version of the PYSCF software package,100 and they are also being
implemented in the Q-CHEM software package.114 Several function-
als (such as PBE,115 PBE0,116 B3LYP,117–119 and ωB97X-D120) are
supported in our implementation. Only PBE0 results are presented
in Sec. IV, while the use of other functionals is found to lead to
qualitatively similar results for the test systems. (The PBE func-
tional results are compared to those of PBE0 for the formaldehyde
molecule in the supplementary material.) The lowest eigenstates are
solved using Davidson’s diagonalization algorithm,121 which is the
default approach for solving TDDFT equations in packages such as
PYSCF and Q-CHEM. The working equation of all eight QED-TDDFT
models is solved directly within our PYSCF implementation. For

TDDFT-PF, for instance, the second and fourth equations in Eq. (8)
are both multiplied by −1, leading to an eigenvalue problem of a
non-symmetric matrix.

For TDDFT-PF and TDDFT-Rabi equations [Eqs. (8) and
(S7)], a compact Hermitian form is shown in Eq. (S18) of the
supplementary material, which is equivalent to Eq. (43) of Ref. 91.
When pure functionals are used, the matrix A − B contains only
diagonal elements, which are virtual-occupied orbital energy differ-
ences,101,122 leading to simple expressions for the electron–electron
and electron–photon blocks [see Eqs. (44) and (45) of Ref. 91]. How-
ever, for the Hartree–Fock method and hybrid exchange-correlation
functionals, A − B would have one or more negative eigenvalues
when the self-consistent field (SCF) solution is externally unstable
with respect to complex SCF.123,124 In those cases, one cannot obtain
a real (A − B)1/2 factor and might fail to transform the eigenvalue
problem to the compact Hermitian form in Eq. (S18).

All calculations have a comparable cost, in terms of timing, to
the corresponding gas-phase TDDFT or TDA calculation. Because
the calculation is dominated by the evaluation of matrix–vector
products (contraction of trial density matrices with two-electron
integrals and the exchange-correlation counterpart), the actual com-
putational time is linearly proportional to the number of trial vec-
tors. In our QED-TDDFT calculations on benzaldehyde, for exam-
ple, it takes about 4 times more trial vectors to obtain the first
50 solutions to the TDDFT-PF, TDDFT-Rabi, TDDFT-RWA, and
TDDFT-JC equations than their TDA counterparts, making them
around 4 times more expensive in terms of computational time.

B. Test systems
The ground-state geometries of all the molecules are obtained

at the PBE0/6-311++G∗∗ level of theory using the Q-CHEM software
package.114 Planar Fabry–Pérot micro-cavities are chosen with a fre-
quency resonant (or near-resonant) with the first excited states with
a significant oscillation strength of each molecule. Namely, a sin-
gle fundamental coupling strength vector (λ) is set to be parallel to
the transition dipole moment of that particular excited state. The
coupling strength is tuned by varying the concentration, while the
maximum coupling strength is obtained using the estimated vol-
ume of each molecule. Note that this assumes that all the molecules
have exactly the same orientation in the optical cavity. The coupling
strengths λ are represented in atomic units, as 1 a.u. = 1

√
meEh/eh̵.

Furthermore, we consider only one mode of the radiation field
with α = 1 and apply the long-wavelength approximation by setting
z to half way between the two mirrors. In the end, Sα(r) in Eq. (3)
has a value of

√
2

Veff
in all our calculations.

Three molecular systems are considered in this work:

● For the ethene molecule, the effective molecular volume is
estimated to be 2331 a3

0, which corresponds to a maximum
coupling strength of λmax = 0.1038a.u. The cavity frequency
is set to be 6.961 eV, which is resonant with the first TDA
excited state in vacuum; and the coupling vector is parallel
to the corresponding electronic transition dipole moment.

● For the formaldehyde molecule, the effective molecular vol-
ume is estimated to be 1991 a3

0, which amounts to a max-
imum coupling strength of λmax = 0.1123 a.u. The cavity
frequency is set to be 6.777 eV in the TDDFT calculations

J. Chem. Phys. 155, 064107 (2021); doi: 10.1063/5.0057542 155, 064107-4

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp
https://www.scitation.org/doi/suppl/10.1063/5.0057542
https://www.scitation.org/doi/suppl/10.1063/5.0057542


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

and 6.784 eV in the TDA calculations, which is in resonant
with the second-excited state in the corresponding gas-phase
calculations.

● For the benzaldehyde molecule, the effective molecular vol-
ume is estimated to be 73 050 a3

0, with the corresponding
maximum coupling strength being λmax = 0.0185a.u. The
cavity frequency is set to be either in resonance (4.879 eV
for TDA, while 4.810 eV for TDDFT) with or 0.02 eV off-
resonant (4.899 eV for TDA and 4.830 eV for TDDFT) from
the second excitation energy.

IV. RESULTS AND DISCUSSIONS
In this section, some preliminary results are presented. In Sub-

section IV A, the ethene molecule (C2H4) is used as a model system
in resonance with the cavity mode to show the equivalence of the
Jaynes–Cummings model and the corresponding TDA-JC method.
In Subsection IV B, polariton spectra of the formaldehyde molecule
(also in resonance with the photon field) are shown at various levels
of QED-TDDFT models to systematically analyze the effects of DSE
and CRT as well as the TDA approximation. In Subsection IV C,
the benzaldehyde molecule is studied as a more practical example of
photochrome. The TDA-JC results are compared to the two-state
model, while the cavity frequencies are set to be in resonance or
off-resonance with the first TDA excitation energy.

A. Ethene
For the ethene molecule, the first excited state in the gas phase

has a TDA excitation energy of 6.961 eV and a transition dipole
moment in the x-direction. As shown in Fig. 2(a), this state exhibits
an expected Rabi splitting into two polariton states upon the applica-
tion of a resonant radiation field in the x-direction. Within the TDA-
JC model, the lower polariton, ∣P1−⟩, keeps reducing its energy, while
the upper polariton, ∣P1+⟩, is subjected to a monotonic increase in its
energy. The Rabi splitting is clearly non-symmetric. By the maximum
coupling strength, λ = 0.1038a.u., the lower polariton has a TDA-JC
excitation energy of 5.965 eV, which translated to a net reduction of
0.996 eV from its gas-phase value. In contrast, the upper polariton
is predicted to have a TDA-JC excitation energy value of 7.270 eV at
λ = 0.1038a.u., which amounts to a net gain of only 0.308 eV.

A symmetric Rabi splitting of the upper and lower polaritons
would be expected for a two-state Jaynes–Cummings model Hamil-
tonian, which is constructed using gas-phase TDA results according
to Eq. (C1). The energy eigenvalues, as expressed in Eqs. (C4) and
(C5), are plotted (as pink triangles) against the coupling strength
in Fig. 2(a). The energy of the lower polariton within the two-state
model decreases linearly with the electron–photon coupling strength
(up to a net reduction of 0.595 eV), while that of the upper polari-
ton increases linearly (in a symmetric fashion with respect to the
lower polariton). While the two-state model can be considered as
an appropriate approximation when the coupling strength is weak, a
non-symmetric Rabi splitting at stronger coupling strength within the

FIG. 2. (a) Polariton spectrum of the
ethene molecule and (b) photon contri-
bution to each polariton state within the
TDA-JC model using the PBE0 func-
tional and 6-311++G∗∗ basis set, as
a function of coupling strength λ. Solu-
tions to model Hamiltonians with different
numbers of states are also presented for
a comparison.
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TDA-JC model would suggest a non-negligible perturbation from one
or more higher excited states.

Within our current implementation of QED-TDA and QED-
TDDFT methods, all molecules are assumed to adopt the same
orientation, whereas an implementation for randomly oriented pho-
tochromes is under development and shall be presented in the
subsequent publications.125 As a direct consequence of this assump-
tion, among higher excited states, only those with a large transition
dipole component in the x-direction can perturb the aforemen-
tioned polaritons. As shown in Table S1, the next state with a sub-
stantial dipole moment in the x-direction is the 13th state with an
excitation energy of 10.022 eV. This state [labeled ∣P2⟩ in Fig. 2(a)]
could be accounted for through building a three-state Hamiltonian
in Eq. (C6). For both ∣P1−⟩ and ∣P1+⟩ polariton states, their energies
within the three-state model are brought much closer to the TDA-JC
values in Fig. 2(a), which is a substantial improvement over the
two-state model.

Interestingly, upon perturbation from the higher excited states,
the ∣P1−⟩ and ∣P1+⟩ polariton states both get lowered in their
energies, hence producing the non-symmetric Rabi splitting. Such
energy lowerings can be easily understood within the three-state
model, where both polaritons are shown in Eqs. (C10) and (C11) to
receive an identical and negative second-order contribution to their
energies. To counterbalance these energy changes, the energy of the
∣P2⟩ state (corresponding to the 13th excited state in the gas phase)
gains energy with increasing coupling strengths, as demonstrated in
Fig. 2(a).

When the polariton “wavefunction” is concerned, Fig. 2(b)
showed that, at the weak-coupling limit, ∣P1−⟩ and ∣P1+⟩ each
contains 50% of photon contribution. As the coupling strength
increases, however, the TDA-JC ∣P1−⟩ state (as well as the one from

the three-state model) gradually gains more photon character. An
explanation of this again requires us to go beyond the two-state
model, which incorrectly predicts a non-varying photon contri-
bution. Indeed, within the three-state model, the lower polariton
“wavefunction” in Eq. (C13) contains larger and larger contribu-
tions from ∣g⟩∣1⟩ with increasing coupling strengths. In contrast, the
TDA-JC upper polariton, ∣P1+⟩, as well as its three-state counter-
part gradually lose photon character, and as a compensation, the ∣P2⟩

state slowly gains some photon character.
In terms of the photon character of ∣P1−⟩ and ∣P1+⟩ states, the

three-state model only qualitatively predicts the trend of the TDA-JC
model. To fully reproduce the TDA-JC energies within 0.02 eV,
however, it would take at least additional 18 excited states from
the gas-phase calculation in the construction of the model Hamil-
tonian. This reflects the strength of our QED-TDA and QED-TDDFT
algorithms: instead of hand-picking excited states that might exert a
significant perturbation, these states are automatically accounted for
through the Davidson diagonalization procedure.

Our TDA-JC calculations and three-state modeling are carried
out with only up to the maximum coupling strength that is allowable
by the molecular volume. Theoretically, though, if one goes beyond
that limit, the three-state model will show that (a) the photon char-
acter of ∣P1−⟩ reaches a peak value before decreasing and (b) the
upper polariton, ∣P1+⟩, loses all its photon character and converges
its energy to the value computed with Eq. (C18).

B. Formaldehyde
For the formaldehyde molecule, the TDA-JC model [marked as

blue dots in Fig. 3(a)] yielded very similar results to that of ethene:

FIG. 3. (a) QED-TDA and (b) QED-TDDFT polariton spectra of the formaldehyde molecule using different QED-TDDFT models with the PBE0 functional and 6-311++G∗∗

basis set, as a function of coupling strength λ. (c) and (d) highlight the difference in the lower polariton energy from Rabi, RWA, and PF models against corresponding
TDA-JC or TDDFT-JC values.
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the first excited state with a substantial oscillator strength in the gas
phase (excitation energy: 6.784 eV, dipole: 0.490a.u.) undergoes a
non-symmetric Rabi splitting in the photon cavity. This happens
due to a perturbation from the fourth state (labeled ∣P2⟩) with an
excitation energy of 7.856 eV and a large transition dipole moment
of 0.3728a.u. in the x-direction.

For this molecule, we would shift our attention to a compari-
son among the JC, Rabi, RWA, and PF variations of QED-TDA or
QED-TDDFT methods. As shown in Fig. 3(a), when the coupling
strength is small, the four variations produce very similar energy
spectra. In fact, at λ = 0.045a.u., the predicted Rabi splitting differs
by no more than 0.02 eV among the four models.

When the coupling strength further increases, the four models
yield nearly identical energies for the upper polariton, ∣P1+⟩. How-
ever, the predicted energies for the lower polariton, ∣P1−⟩, start to
exhibit notable differences [Fig. 3(a)]. This is clearer in Fig. 3(c),
which shows the energy differences against the TDA-JC model. The
TDA-Rabi model (marked red), which adds the CRT to TDA-JC,
lowers the polariton energy in an agreement with the leading per-
turbative correction in Eq. (19). Meanwhile, the TDA-RWA model
(illustrated as green dots) captures the DSE contribution missing in
the TDA-JC model and, thus, raises the polariton energy in consis-
tence with Eq. (17). At large λ values, the CRT correction to the
TDA-JC model is found to be three to four times smaller than the
DSE correction, in terms of the absolute value. For the TDA-PF
model [marked yellow in Fig. 3(b)], which adds both CRT and DSE
corrections to the TDA-JC model, the CRT only partially canceled
the DSE component, leading also to a net energy increase.

At smaller λ values, the CRT correction is found numer-
ically to be exactly − 1

4 of the DSE correction, which is con-
sistent with our earlier analysis at the end of Subsection II C.
Therefore, we also mentioned Mandal et al.’s prediction that the
CRT correction is − 1

2 of the DSE value at resonance.52 This dis-
crepancy is caused by a subtle difference in choosing the value
of the fundamental coupling strength, λα, which is set to be
√

2
ϵ0Veff

ϵα in our work but
√

1
ϵ0Veff

ϵα in Ref. 52. As a result, our

DSE correction in Eq. (17) is twice larger. Meanwhile, at reso-
nance and weak coupling, the electron–photon coupling in Eq. (20)
can be written as gα,I =

√ωα
2h̵ (λα ⋅ μTDA−JC

I ) =
√ωα

2h̵ (λα ⋅
1√

2
μTDA

I )

=
√

ωα
2h̵ϵ0Veff

(ϵα ⋅ μTDA
I ), which is exactly the same as Eq. (11) in

Ref. 52. This led to an identical CRT correction, − h̵
2ωα

g2
α,I . In choos-

ing our value for λα, we follow Rubio,83,91 Subotnik,65–67,126 and oth-
ers.82,98 It would be a reasonable choice when one or more molecules
is placed within a horizontal plane equidistant from the two mirrors
(z = Lz/2, where the sine wave reaches its maximum value). When
the molecular concentration further increases, however, it might be
better to follow Huo and co-workers and adopt a reduced λα value
to reflect a molecular distribution along the photon wavevector (i.e.,
perpendicular to mirror surfaces).52,112

While our discussion on the formaldehyde molecule has, so far,
focused on QED-TDA calculations, all our observations on the com-
parison among JC, Rabi, RWA, and PF models would also apply to
QED-TDDFT results displayed in Figs. 3(c) and 3(d). Overall, with
the leading contribution from CRT and DSE being second-order
to the coupling strength, both terms can be ignored for small cou-
pling strengths. Namely, the TDA-JC and TDDFT-JC models can be
used to describe polariton states at the weak light–matter interaction
regime.52,113 However, more caution is needed to select an appropri-
ate model in strong and ultra-strong coupling regimes, where the
lower polariton energy can become unbounded without the DSE
correction.52

C. Benzaldehyde
The TDA-JC results of the benzaldehyde molecule are pre-

sented as a more realistic example of the photochrome. (Other QED-
TDDFT models are also tested and found to lead to similar results in
Table S5.) In particular, the focus is placed on the second-excited
state from the gas-phase TDA calculation with an excitation energy
of 4.879 eV and a transition dipole of 0.427a.u. in the xy-plane. In
Fig. 4(a), this state is coupled to a resonant Fabry–Pérot mode, while

FIG. 4. Absorption spectra of the benzaldehyde molecule from TDA-JC (solid lines) and two-state Jaynes–Cummings model (dotted-dashed lines) calculations with different
coupling strengths using the PBE0 functional and 6-311++G∗∗ basis set. The Fabry–Pérot mode is chosen to be (a) in resonance (4.879 eV) and (b) 0.02 eV off-resonance
(4.899 eV) from the gas-phase excited state. The blue and orange lines indicate the electron and photon contributions, respectively. Following Ref. 91, Lorentzian broadening
is employed with Δ = 10−2 eV.
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in Fig. 4(b), it is coupled to an off-resonance cavity mode of 4.899 eV
(i.e., a detuning of 0.02 eV). Clearly, as the coupling strength λ
increases, larger Rabi splittings occur in both resonant and off-
resonant cases. Moreover, the energies of both lower and upper
polaritons deviate further away from the two-state-predicted values
(dotted–dashed lines), in a way similar to the ethene and formalde-
hyde molecules. Interestingly, for our chosen coupling strengths, the
off-resonance results in Fig. 4(b) show slightly smaller differences
between the two-state Jaynes–Cummings model and the TDA-JC
method. This occurs because, with a detuning of 0.02 eV, the overall
Rabi splitting is slightly smaller.

An analysis of the composition of polariton “wavefunction” of
benzaldehyde leads to observations similar to the ethene molecule
[Fig. 2(b)]. At non-zero coupling strengths, the lower polariton,
∣P1−⟩, is shown in Fig. 5(a) to contain less electron contribution
than the photon contribution, while the opposite can be seen for
the upper polariton, ∣P1+⟩. Such deviations from the two-state
Jaynes–Cummings model, which would predict equal electron and
photon contributions for both polaritons in a resonance coupling,
can be traced to non-negligible second-order contributions from
higher excited states (third, fifth, and 11th states in Table S4, and
many more) of gas-phase benzaldehyde. For off-resonance coupling,
similar behavior can also be seen in Fig. 5(a), but the lower polari-
ton, ∣P1−⟩, contains more electron contributions (than the resonance
case) due to a higher photon energy.

At first glance, smaller electronic contribution to the lower
polariton with stronger electron–photon coupling, as shown in
Fig. 5(a), would appear to contradict Figs. 4(a) and 4(b), where the
TDA-JC molecular oscillation strength (marked blue) of the lower
polariton actually increases with coupling strength. To resolve such

FIG. 5. (a) Electron contributions and (b) the corresponding norms of transition
dipole moments for the lower and upper polaritons of benzaldehyde at different
coupling strengths with resonance (blue) and off-resonance (red) photon energies.

a “contradiction,” it is useful to examine the change in the molec-
ular transition dipoles of the polaritons [as defined in Eqs. (S2) and
(S3) in the supplementary material] with varying coupling strengths.
Surprisingly, as shown in Fig. 5(b), the transition dipole of the lower
polariton increases with larger coupling strength, while the oppo-
site happens to the upper polariton. This can be understood within
a three-state model. Specifically, Eq. (C15) indicates that the tran-
sition dipole of the lower polariton will be enhanced by those of
higher-energy excited states, while the transition dipole of the upper
polariton will get weakened by those states [Eq. (C16)]. This is con-
firmed by Fig. S1, which shows a steady increase in the transition
dipole of the lower polariton as more states are included in the
Jaynes–Cummings model Hamiltonian and by an opposite trend
for the upper polariton in Fig. S1. In the limit of strong couplings
(such as λ = 0.018 53 a.u.), the upper polariton state of benzaldehyde
should be dominated by the ∣e1⟩ state (with the corresponding coeffi-
cient being 0.88). However, due to the slow 1

ω2−ω decay arising from
Eqs. (C15) and (C16) and demonstrated in Fig. S1, many higher
excited states (with small but non-zero mixing coefficients) com-
bine together to cancel the ∣e1⟩ dipole moment. At λ = 0.018 53 a.u.,
the transition dipoles for the upper polariton are reduced by two
thirds from its gas-phase value, leading to only marginal oscillator
strengths in Fig. 4.

Such collective enhancement (weakening) of the lower (upper)
polariton transition dipole by many higher excited states would
be difficult to capture with the construction of multi-state
Jaynes–Cummings model Hamiltonians. As shown in Fig. S1, with
strong coupling, tens of excited states need to be included in the
model before the converged value of the transition dipole moment
can be approached. However, it holds the key to our understand-
ing of the absorption spectra of benzaldehyde in this work as well
as other molecules displaying non-symmetric Rabi splitting, such as
merocyanine in Fig. 3(a) of Ref. 27, benzene in Fig. 6 of Ref. 91, and
formaldehyde in Fig. 3(a) of Ref. 93 and Fig. S2 of the supplementary
material.

V. CONCLUSIONS
In summary, some progress has been made in this work on the

formulation, implementation, and understanding of QED-TDDFT
models, including:

● The two-state Jaynes–Cummings model could be considered
as an appropriate approximation when the coupling strength
is weak enough that the higher excited states can be ignored.

● Through linear-response and equation-of-motion formula-
tions, simple QED-TDDFT working equations are obtained
for the Pauli–Fierz Hamiltonian. The Gaussian-basis imple-
mentation of the TDDFT-PF and associated approximate
models paves the way for their routine applications.

● In the strong and ultra-strong coupling regime, the polari-
tons might get perturbed notably by higher excited states
with significant transition dipole moments. For our test
molecules, these excited states reduce the electron contribu-
tion to the lower polariton but enhance its transition dipole
moment and oscillator strength, whereas they affect the
upper polariton in exactly the opposite manner. While the
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QED-TDDFT/TDA method accounts for these effects natu-
rally, it would be cumbersome (if feasible at all with the slow
decay) to identify all these states from gas-phase calculations
and then include them in the model Hamiltonian.

● At the strong coupling limit, the dipole self-energy and
counter-rotation terms can also cause notable changes to the
energies of polariton states.
On the other hand, within the TDDFT framework, several
technical components are yet to be developed:

● In this work, the photochromes are assumed to be sepa-
rated in the vacuum. To capture the effect of other molecular
species in the cavity (such as PMMA or solvents), implicit
solvent models or combined quantum mechanical molecular
mechanical models should be adopted.

● Analytical energy derivatives are needed to allow for (a)
the optimization of the photochromic geometry for differ-
ent polariton states and (b) the modeling of photochemical
reactions and absorption/emission spectra.

● All molecules are assumed to adopt the same orientation
within the optical cavity. Our models need to be extended
to cases where molecules adopt random orientations.

Work along these lines is expected to be rather straightforward
and will be reported in subsequent publications.

SUPPLEMENTARY MATERIAL

See the supplementary material for (a) details on the com-
putation of absorption spectra, (b) conversion of TDDFT-PF and
TDDFT-Rabi equations into the compact Hermitian form, (c)
geometry of the three test molecules, and (d) the numerical results
from gas-phase TDDFT as well as QED-TDDFT calculations on
three molecules.
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APPENDIX A: LINEAR-RESPONSE DERIVATION

In this section, we present a matrix derivation of the QED-
TDDFT equations that closely follow Rubio and co-workers’
approach based on the linear-response formula.82–84,86,89,94–96

1. Density response kernel
For a Kohn–Sham (KS)-DFT electronic ground state, its Fock

matrix (i.e., effective one-electron Hamiltonian) is diagonal in the
representation of Kohn–Sham orbitals,

F0 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Foo 0

0 Fvv

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (A1)

with Fij = εiδij and Fab = εaδab. The density matrix takes the format

P0 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

Ioo 0

0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(A2)

with a single occupancy for the lowest-energy spin orbitals.
Within the matrix formulation of TDDFT, the Fock matrix is

subjected to a frequency-dependent perturbation,

F(t) = F0 + δF(t), (A3)

δF(t) =
⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 δF(Ω)ov eiΩt

δF(Ω)vo e−iΩt 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 δF(−Ω)
ov e−iΩt

δF(−Ω)
vo eiΩt 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

(A4)

where δF(Ω)ov = δF(Ω),†vo and δF(−Ω)
ov = δF(−Ω),†

vo to maintain a Hermi-
tian matrix. Such a perturbation causes a response in the density
matrix,

P(t) = P0 + δP(t), (A5)

δP(t) =
⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 δP(Ω)ov eiΩt

δP(Ω)vo e−iΩt 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 δP(−Ω)
ov e−iΩt

δP(−Ω)
vo eiΩt 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

(A6)
where δP(Ω)ov = δP(Ω),†vo and δP(−Ω)

ov = δP(−Ω),†
vo .

The density response is governed by the time-dependent
Kohn–Sham (TDKS) equation,101,103,105,108

ih̵
∂P(t)
∂t

= [F(t), P(t)] = [δF(t), P0] + [F0, δP(t)], (A7)

which is

ih̵
∂P(t)
∂t

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 −δFov

δFvo 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 FooδPov − δPovFvv

FvvδPvo − δPvoFoo 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (A8)
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Below, we shall focus on the vo-block of this equation, which
requires

ih̵
∂Pvo(t)

∂t
= δFvo + FvvδPvo − δPvoFoo, (A9)

noting that the ov-block equation is the complex conjugate.
Collecting the e−iΩt and eiΩt terms separately from both sides of

Eq. (A9), one gets

(h̵Ω)δP(Ω)vo = δF(Ω)vo + FvvδP(Ω)vo − δP(Ω)vo Foo, (A10)

(−h̵Ω)δP(−Ω)
vo = δF(−Ω)

vo + FvvδP(−Ω)
vo − δP(−Ω)

vo Foo, (A11)

which can be written explicitly as

(h̵Ω − εa + εi)δP(Ω)ai = δF(Ω)ai , (A12)

(−h̵Ω − εa + εi)δP(−Ω)
ai = δF(−Ω)

ai . (A13)

This shows how the density matrix would respond to a frequency-
dependent change in the Fock matrix.

2. Electron equations within QED-TDDFT
For a molecule in an optical cavity, its Fock matrix is influenced

by changes in both the electronic density matrix in Eq. (A6) as well
as the electron–photon coupling,

δF(Ω)ai = δF(Ω)ai,elec + δF(Ω)ai,elec–photon, (A14)

δF(−Ω)
ai = δF(−Ω)

ai,elec + δF(−Ω)
ai,elec–photon. (A15)

For F(Ω)ai , it is only perturbed by P(Ω)bj and P(−Ω)
jb , which carry the

same e−iΩt factor in Eq. (A6),

δF(Ω)ai,elec =∑
bj
(
∂Fai

∂Pbj
δP(Ω)bj +

∂Fai

∂Pjb
δP(−Ω)

jb )

=∑
bj
[[Aai,bj − (εa − εi)δabδij]δP(Ω)bj + Bai,bjδP(−Ω)

jb ]. (A16)

Similarly, for F(−Ω)
ai,elec , one gets

δF(−Ω)
ai,elec =∑

bj
(
∂Fai

∂Pbj
δP(−Ω)

bj +
∂Fai

∂Pjb
δP(Ω)jb )

=∑
bj
[[Aai,bj − (εa − εi)δabδij]δP(−Ω)

bj + Bai,bjδP(Ω)jb ]. (A17)

For the electron–photon interaction energy in Eq. (7),

Velec–photon =
M

∑
α=1

1
2

ω2
α(qα −

1
ωα

λα ⋅ μ)
2
. (A18)

Its corresponding Fock matrix contribution is

Fai,elec–photon =
∂Velec–photon

∂Pai

=
M

∑
α=1

ωαλα
ai(qα −

1
ωα

λα ⋅ μ), (A19)

which uses the dipole derivative

∂μ
∂Pai

=
∂(μnuc − μmo ⋅ P)

∂Pai
= −μai. (A20)

Clearly, the Fock matrix contribution in Eq. (A19) is perturbed by
the density matrix and the photon coordinate,

δF(Ω)ai,elec–photon = δF(−Ω)
ai,elec–photon

=∑
bj
(

M

∑
α=1

λα
aiλ

α
bj)(δP(Ω)bj + δP(−Ω)

jb ) +
M

∑
α=1

ωαλα
aiδqα

=∑
bj

Δai,bj(δP(Ω)bj + δP(−Ω)
jb )

+
M

∑
α=1

√
h̵ωα

2
λα

ai(Mα +Nα), (A21)

which uses the expression of Δai,bj in Eq. (9) and replaces δq̂α
with dimensionless quantities (instead of the original amplitudes
introduced in Ref. 91),

δqα =

√
h̵

2ωα
(Mα +Nα). (A22)

Substituting Eqs. (A16), (A17), and (A21) into the right-hand side of
Eqs. (A12) and (A13), one obtains

(h̵Ω)δP(Ω)ai =∑
bj
(Aai,bj + Δai,bj)δP(Ω)bj

+∑
bj
(Bai,bj + Δai,bj)δP(−Ω)

jb

+
M

∑
α=1

√
h̵ωα

2
λα

ai(Mα +Nα), (A23)

(−h̵Ω)δP(−Ω)
ai =∑

bj
(Aai,bj + Δai,bj)δP(−Ω)

bj

+∑
bj
(Bai,bj + Δai,bj)δP(Ω)jb

+
M

∑
α=1

√
h̵ωα

2
λα

ai(Mα +Nα). (A24)

Assume that δP(Ω)ai = δP(Ω)ia and δP(−Ω)
ai = δP(−Ω)

ia are all real and
write them as Xai and Yai, respectively; we obtain the electronic
portion of the QED-TDDFT equation in Eq. (8).

3. Photon equations within QED-TDDFT
The photon equation of state is91

(
∂2

∂t2 + ω2
α)qα(t) = −

1
ωα

jeff
α (t)

= −
1

ωα
(jα(t) − ω2

αλα ⋅ μ). (A25)
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For qα(t) and jeff
α (t) oscillating with frequency Ω, they satisfy

(Ω2
− ω2

α)δqα =
1

ωα
δjeff

α . (A26)

Therefore, the photon response is

δqα =
1

ωα

1
Ω2 − ω2

α
δjeff

α

=
1

2ω2
α
(

1
Ω − ωα

−
1

Ω + ωα
)δjeff

α . (A27)

A key to the QED-TDDFT method is the splitting of the right-hand
side,91 which underlies Eq. (A22),

(h̵Ω − h̵ωα)Mα =

√
h̵

2ω3
α

δjeff
α , (A28)

−(h̵Ω + h̵ωα)Nα =

√
h̵

2ω3
α

δjeff
α , (A29)

where δjeff
α can be easily derived from Eq. (A25),

δjeff,(Ω)
α = ω2

α∑
bj

λα
bj(δP(Ω)bj + δP(−Ω)

jb ). (A30)

Therefore,

(h̵Ω)Mα =∑
bj

√
h̵ωα

2
λα

bj(δP(Ω)bj + δP(−Ω)
jb ) + (h̵ωα)Mα, (A31)

−(h̵Ω)Nα =∑
bj

√
h̵ωα

2
λα

bj(δP(Ω)bj + δP(−Ω)
jb ) + (h̵ωα)Nα, (A32)

which are the photon portions of Eq. (8).

APPENDIX B: EQUATION-OF-MOTION DERIVATION

Below, we shall use an alternative approach, which is based on
the equation-of-motion by transforming into a Heisenberg picture,
to derive the same QED-TDDFT equation in Eq. (8).109–111 Within
this derivation, the split of qα in Eq. (A22) will come naturally.

1. Unitary transformation of the electronic
wavefunction

The electronic wavefunction evolves with a unitary transforma-
tion,

∣Φ(t)⟩ = e−Λ̂e(t)∣Φ0⟩, (B1)

Λ̂e(t) =∑
ai
(−Θ∗ai(t)â

†
i âa +Θai(t)â†

a âi). (B2)

Using the following commutators:110

[â†
a âi, â†

j âb] = δijâ†
a âb − δabâ†

j âi, (B3)

[â†
a âi, â†

b âj] = [â†
i âa, â†

j âb] = 0, (B4)

one can find

[Λ̂e, â†
j âb] =∑

a
Θaj(t)â†

a âb −∑
i

Θbi(t)â
†
j âi, (B5)

[Λ̂e, â†
b âj] =∑

a
Θ∗aj(t)â

†
b âa −∑

i
Θ∗bi(t)â

†
i âj. (B6)

Using the leading terms of the following
Baker–Campbell–Hausdorff (BCH) expansion:

eΛ̂e(â†
j âb + â†

b âj)e−Λ̂e

= â†
j âb + â†

b âj +∑
a
(Θaj(t)â†

a âb +Θ∗aj(t)â
†
b âa)

− ∑
i
(Θbi(t)â

†
j âi +Θ∗bi(t)â

†
i âj) +O(Θ2

), (B7)

one finds

⟨Φ(t)∣(â†
j âb + â†

b âj)∣Φ(t)⟩ = ⟨Φ0∣eΛ̂e(â†
j âb + â†

b âj)e−Λ̂e ∣Φ0⟩

= −Θbj(t) −Θ∗bj(t). (B8)

2. Unitary transformation of the photon wavefunction
Similarly, the photon wavefunction is also subjected to a unitary

transformation [Eq. (26) in Ref. 97],

∣χ(t)⟩ = e−Λ̂ph(t)∣χ0⟩, (B9)

Λ̂ph(t) =∑
α
(−C∗α (t)b̂α + Cα(t)b̂†

α). (B10)

Using the commutators for bosons,

[b̂α, b̂†
β] = δαβ, [b̂α, b̂β] = [b̂

†
α, b̂†

β] = 0, (B11)

one gets

[Λ̂ph, b̂α] = −Cα(t), [Λ̂ph, b̂†
α] = −C∗α (t). (B12)

Accordingly, the following BCH expansions vanish after the first-
order:

eΛ̂ph b̂αe−Λ̂ph = b̂α − Cα(t), (B13)

eΛ̂ph b̂†
αe−Λ̂ph = b̂†

α − C∗α (t). (B14)

From this, one can compute

⟨χ(t)∣(b̂α + b̂†
α)∣χ(t)⟩ = −Cα(t) − C∗α (t), (B15)

⟨χ(t)∣b̂†
αb̂α∣χ(t)⟩ = ⟨χ0∣(eΛ̂ph b̂†

αe−Λ̂ph)(eΛ̂ph b̂αe−Λ̂ph)∣χ0⟩

= Cα(t)C∗α (t). (B16)

3. Pauli–Fierz energy components
The dipole moment operator can be written as

μ̂ = μ0 −∑
bj

μbj(â
†
j âb + â†

b âj), (B17)
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λα ⋅ μ̂ = λα ⋅ μ0 −∑
bj

λα
bj(â

†
j âb + â†

b âj). (B18)

The formulas suggest that the expectation value in the Pauli–Fierz
Hamiltonian in Eq. (7) is

λα ⋅ ⟨μ̂⟩ = μ0 + ⟨Δμ̂⟩ = λα ⋅ μ0 −∑
bj

λα
bj(Θbj +Θ∗bj), (B19)

where the ground-state dipole moment shifts the minimum of the
quantum harmonic oscillator of the photon, q̂α Ð→ q̂α −

1
ωα

λα ⋅ μ0.
Then, the Pauli–Fierz Hamiltonian can be written as

ĤPF = Ĥelec(t) +
1
2

M

∑
α=1
(λα ⋅ ⟨Δμ̂⟩)2

−
M

∑
α=1

ωαq̂α(λα ⋅ ⟨Δμ̂⟩)

+
M

∑
α=1
[

1
2

p̂2
α +

1
2

ω2
αq̂2

α] +
M

∑
α=1

jα(t)
ωα

q̂α. (B20)

With this Hamiltonian, the energy of the time-evolving wave-
function is

EPF(Θ, C) = ⟨χ(t)∣⟨Φ(t)∣ĤPF∣χ(t)⟩∣χ(t)⟩. (B21)

Its electronic component is109–111

⟨χ(t)∣⟨Φ(t)∣Ĥelec∣Φ(t)⟩∣χ(t)⟩ = ⟨Φ(t)∣Ĥelec∣Φ(t)⟩

= E0+
1
2∑ai,bj
(Θ∗aiAai,bjΘbj +ΘaiAai,bjΘ

∗
bj

+ ΘaiBai,bjΘbj +Θ∗aiBai,bjΘ
∗
bj),

(B22)

while the DSE contribution is

⟨χ(t)∣⟨Φ(t)∣
1
2

M

∑
α=1
(λα ⋅ ⟨Δμ̂⟩)2

∣Φ(t)⟩∣χ(t)⟩

=
1
2∑ai,bj

Δai,bj(Θai(t) +Θ∗ai(t))(Θbj(t) +Θ∗bj(t)), (B23)

which uses the expressions in Eqs. (B18) and (B8).
The electron–photon coupling energy is

− ⟨χ(t)∣⟨Φ(t)∣
M

∑
α=1

ωαq̂α(λα ⋅ ⟨Δμ̂⟩)∣Φ(t)⟩∣χ(t)⟩

= −
M

∑
α=1

ωα⟨χ(t)∣q̂α∣χ(t)⟩⟨Φ(t)∣(λα ⋅ Δμ̂)∣Φ(t)⟩

=∑
α,bj

√
h̵ωα

2
[Cα(t) + C∗α (t)]λ

α
bj(Θbj(t) +Θ∗bj(t)), (B24)

which uses the definition of photon coordinate in Eq. (4) and the
expression in Eq. (B15).

Finally, from Eq. (B16), the photon energy can be found to be

⟨χ(t)∣⟨Φ(t)∣
M

∑
α=1
[

1
2

p̂2
α +

1
2

ω2
αq̂2

α]∣Φ(t)⟩∣χ(t)⟩

=
M

∑
α=1
⟨χ(t)∣[

1
2

p̂2
α +

1
2

ω2
αq̂2

α]∣χ(t)⟩

=
M

∑
α=1

h̵ωα⟨χ(t)∣[b̂†
αb̂α +

1
2
]∣χ(t)⟩

=
M

∑
α=1

h̵ωα[Cα(t)C∗α (t) +
1
2
]. (B25)

Putting these together, we will get the following derivatives:

∂EPF

∂Θai
=∑

bj
[(A + Δ)ai,bjΘ

∗
bj(t) + (B + Δ)ai,bjΘbj(t)]

+ h̵gα
ai[Cα(t) + C∗α (t)], (B26)

∂EPF

∂Cα
=∑

bj
h̵gα

bj(Θbj(t) +Θ∗bj(t)) + h̵ωαC∗α (t). (B27)

4. Equations-of-motion
Let us expand the Lagrangian to first-order,

L = ⟨χ(t)∣⟨Φ(t)∣ih̵ ∂

∂t
− ĤPF∣Φ(t)⟩∣χ(t)⟩

= i∑
ai

Θ∗ai(t)
∂

∂t
Θai(t) + ih̵∑

α
C∗α (t)

∂

∂t
Cα(t)

− EPF(Θ(t), C(t)). (B28)

The equation-of-motion for the orbital rotations is

−
∂

∂t
(
∂L
∂Θ̇ai

) = −
∂L
∂Θai

, (B29)

namely,

− ih̵
∂

∂t
Θ∗ai =

∂EPF

∂Θai
. (B30)

Let us parameterize the orbital rotations as

Θai(t) = Xai e−iΩt
+ Yai eiΩt , (B31)

Θ∗ai(t) = Xai eiΩt
+ Yai e−iΩt . (B32)

and the photon phase change as

Cα(t) =Mα e−iΩt
+Nα eiΩt , (B33)

C∗α (t) =Mα eiΩt
+Nα e−iΩt . (B34)

Plugging in orbital rotation derivatives in Eq. (B26) and sep-
arating the eiΩt and e−iΩt terms in Eq. (B30), one gets the first two
equations in Eq. (8),
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ΩXai =∑
bj
[(A + Δ)ai,bjXbj + (B + Δ)ai,bjYbj] + ∑

α
h̵gα

ai(Mα +Nα),

(B35)

−ΩYai =∑
bj
[(B + Δ)ai,bjXbj + (A + Δ)ai,bjYbj] + ∑

α
h̵gα

ai(Mα +Nα).

(B36)

The equation-of-motion for the photon phase is similar,

− ih̵
∂

∂t
C∗α =

∂EPF

∂Cα
, (B37)

which, upon the insertion of the derivatives in Eq. (B27), leads to the
last two equations in Eq. (8),

ΩMα =∑
bj

h̵gα
bj(X + Y)bj + h̵ωαMα, (B38)

−ΩNα =∑
bj

h̵gα
bj(X + Y)bj + h̵ωαNα. (B39)

APPENDIX C: TWO-STATE AND THREE-STATE JC
MODELS

Let us consider a two-level system made of ∣e1⟩∣0α⟩ and ∣g⟩∣1α⟩,
both of which have a resonance energy of hω. The two-state JC
equation is

⎡
⎢
⎢
⎢
⎢
⎢
⎣

h̵ω sh̵g1

sh̵g1 h̵ω

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

X1

M

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= h̵Ω
⎡
⎢
⎢
⎢
⎢
⎢
⎣

X1

M

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, (C1)

where a scaling factor s is added to track the perturbation order. Its
solutions are known to be the lower and upper polaritons,

∣1−⟩ =
1
√

2
∣e1⟩∣0α⟩ −

1
√

2
∣g⟩∣1α⟩, (C2)

∣1+⟩ =
1
√

2
∣e1⟩∣0α⟩ +

1
√

2
∣g⟩∣1α⟩, (C3)

with the energies being

h̵Ω1− = h̵ω − sh̵g1, (C4)
h̵Ω1+ = h̵ω + sh̵g1, (C5)

respectively.
Now, let us introduce a third state, ∣e2⟩∣0α⟩, which has an energy

of hω2 and is well separated from the two polariton states. The
corresponding three-state JC equation is

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

h̵ω2 0 sh̵g2

0 h̵ω sh̵g1

sh̵g2 sh̵g1 h̵ω

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

X2

X1

M

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= h̵Ω′

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

X2

X1

M

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (C6)

Upon switching to the basis of [∣e2⟩∣0α⟩, ∣1+⟩, ∣1−⟩], the three-state
JC equation becomes

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

h̵ω2
sh̵g2
√

2
−

sh̵g2
√

2
sh̵g2
√

2
h̵ω + sh̵g1 0

−
sh̵g2
√

2
0 h̵ω − sh̵g1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

X2

P1+

P1−

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= h̵Ω′

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

X2

P1+

P1−

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (C7)

We can get the second-order perturbation to the energy of
upper and lower polaritons as

h̵Ω′1− = h̵ω − sh̵g1 −

1
2 s2h̵2g2

2

h̵ω2 − (h̵ω − sh̵g1)
+ ⋅ ⋅ ⋅ , (C8)

h̵Ω′1+ = h̵ω + sh̵g1 −

1
2 s2h̵2g2

2

h̵ω2 − (h̵ω + sh̵g1)
+ ⋅ ⋅ ⋅ . (C9)

To the second-order of s, we, thus, have

h̵Ω′1− = h̵ω − sh̵g1 − s2 h̵2g2
2

2(h̵ω2 − h̵ω)
+O(s3

), (C10)

h̵Ω′1+ = h̵ω + sh̵g1 − s2 h̵2g2
2

2(h̵ω2 − h̵ω)
+O(s3

). (C11)

Within the perturbation theory, the lower polariton wavefunc-
tion becomes

∣1−⟩′ = ∣1−⟩(0) + ∣1−⟩(1) + ∣1−⟩(2) + ⋅ ⋅ ⋅

= ∣1−⟩ +
−sh̵g2/

√
2

(h̵ω − sh̵g1) − h̵ω2
∣e2⟩∣0α⟩

+
− 1

2 s2h̵2g2
2

(−2 sh̵g1)[(h̵ω − sh̵g1) − h̵ω2]
∣1+⟩ + ⋅ ⋅ ⋅ . (C12)

Sustituting the expressions in Eqs. (C2) and (C3) and truncating at
the first-order of s, one gets

∣1−⟩′ = −
1
√

2
(1 +

sg2
2

4g1(ω2 − ω)
)∣g⟩∣1α⟩

+
1
√

2
(1 −

sg2
2

4g1(ω2 − ω)
)∣e1⟩∣0α⟩

+
sg2

√
2(ω2 − ω)

∣e2⟩∣0α⟩ +O(s2
). (C13)

Similarly, the perturbed upper polariton wavefunction is

∣1+⟩′ =
1
√

2
(1 −

sg2
2

4g1(ω2 − ω)
)∣g⟩∣1α⟩

+
1
√

2
(1 +

sg2
2

4g1(ω2 − ω)
)∣e1⟩∣0α⟩

−
sg2

√
2(ω2 − ω)

∣e2⟩∣0α⟩ +O(s2
). (C14)

The corresponding transition dipole moments are
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μ′− = ⟨g∣⟨0α∣μ∣1+⟩′ =
1
√

2
(1 −

sg2
2

4g1(ω2 − ω)
)μ1

+
sg2

√
2(ω2 − ω)

μ2 +O(s
2
), (C15)

μ′+ = ⟨g∣⟨0α∣μ∣1+⟩′ =
1
√

2
(1 +

sg2
2

4g1(ω2 − ω)
)μ1

−
sg2

√
2(ω2 − ω)

μ2 +O(s
2
). (C16)

If larger coupling occurs with the second-excited state of the
gas-phase molecule (g2 ≫ g1), the upper polariton ∣1+⟩ (at small s
values) gradually loses photon contributions as the s values increase
and the coupling between other states becomes more dominant.
In the limit that M approaches zero, its corresponding eigenvector
in Eq. (C6) becomes (X2, X1, 0)T. The third equation of Eq. (C6)
requires that X2 g2 + X1 g1 = 0 or X2/X1 = −g1/g2. For this state
without any photon character, the normalized eigenvector is, thus,

lim
g2≫g1 ,s≫0

∣1+⟩′ =
g2

g2
1 + g2

2
∣e1⟩∣0α⟩ −

g1

g2
1 + g2

2
∣e2⟩∣0α⟩, (C17)

with the energy being

lim
g2≫g1 ,s≫0

Ω′1+ = ω +
g2

1(ω2 − ω)
g2

1 + g2
2

. (C18)
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