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ABSTRACT: We propose a method to calculate the spectral functions of many-body
systems by Chebyshev expansion in the framework of matrix product states coupled with
canonical orthogonalization (coCheMPS). The canonical orthogonalization can improve
the accuracy and efficiency significantly because the orthogonalized Chebyshev vectors
can provide an ideal basis for constructing the effective Hamiltonian in which the exact
recurrence relation can be retained. In addition, not only the spectral function but also
the excited states and eigenenergies can be directly calculated, which is usually
impossible for other MPS-based methods such as time-dependent formalism or
correction vector. The remarkable accuracy and efficiency of coCheMPS over other
methods are demonstrated by calculating the spectral functions of spin chain and ab
initio hydrogen chain. For the first time we demonstrate that Chebyshev MPS can be
used to deal with ab initio electronic Hamiltonian effectively. We emphasize the strength
of coCheMPS to calculate the low excited states of systems with sparse discrete
spectrum. We also caution the application for electron−phonon systems with dense density of states.

The calculation of spectral functions of many-body systems
is the central question in both quantum chemistry and

condensed matter physics. Density matrix renormalization
group (DMRG)1,2 and its matrix product states (MPS)
formulation3 have achieved great success in studying the
ground states of one-dimensional strongly correlated quantum
lattices which have low entanglement entropy according to the
area law.4 Time-dependent DMRG (TD-DMRG) has been
widely used to simulate the real-time dynamics and also obtain
the spectral functions by Fourier transform, including the
energy transfer5−9 and spectroscopy10 of exciton systems, and
attosecond electron dynamics and spectroscopy.11−14 How-
ever, one fundamental limitation of TD-DMRG is that the
entanglement increases nearly linearly during the time
evolution, and therefore the compression of a time-dependent
wave function as an MPS becomes less effective, which limits
the time that can be reached and hence the spectral
resolution.15 A few alternative algorithms have been proposed
to calculate the spectral functions directly in the frequency
domain. The pioneering Lanczos DMRG16 was simple but
limited to the first several low-lying states. Its adaptive scheme
and MPS formulation with reorthogonalization were recently
proposed to partly avoid several shortcomings of the original
algorithm.17,18 The correction vector DMRG19−21 and its
variational version dynamical DMRG (DDMRG),22 which
target the correction vector for each frequency independently,
were very accurate methods for dynamical correlation
functions. However, they were computationally expensive
since a set of large sparse (sometimes ill-conditioned) linear
equations for each frequency should be solved even though

they are perfectly parallelizable. Besides these methods, the
analytical linear response DMRG methods have also been
developed, which take their cue from traditional quantum
chemistry methods.23−25

Recently, the Chebyshev matrix product state (CheMPS)26

emerges as a powerful tool with a compromise between
accuracy and numerical cost for spin systems in condensed
matter physics.27−30 However, its potential in quantum
chemical problems has not been explored. The key to
Chebyshev expansion is to generate a set of Chebyshev
vectors by a three-term recurrence relation. One primary
approximation made along the recursive generations is using
MPS with truncated bond dimension to approximate the
Chebyshev vectors, which introduces numerical errors and
thus gradually breaks the three-term recurrence as the order of
expansions increases29 (similar but more severe problems are
also met in Lanczos MPS18). Consequently, further increasing
the expansion order becomes less reliable. In this Letter, we
improve the original CheMPS by a post-orthogonalization
process and examine its performance for different systems. In
particular, for the first time, we tailor this method to simulate
the ab initio electronic spectra of strongly correlated systems
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which are hard for the common time-independent electronic
structure methods. Before illustrating the details, we will recap
the main points of CheMPS, and the existing problems will be
discussed alongside. CheMPS combines the kernel polynomial
expansion31 with matrix product states to expand the
dynamical correlation function for operators Â and B̂ at zero
temperature,26

ω δ ω= ⟨ | ̂ − ̂ + |̂ ⟩G A H E B( ) 0 ( ) 0AB 0 (1)

where |0⟩ and E0 are the ground state and the corresponding
energy, Ĥ is the Hamiltonian, and ω is the frequency of the
external field. According to the property of Chebyshev
polynomials, one should rescale and shift the frequency and
Hamiltonian in eq 1 to [−1, 1] (in practice to [−W′, W′] and
W′ is slightly smaller than 1 to ensure numerical stability). The
rescaling and shift is made by ω′ = f(ω) and Ĥ′ = f(Ĥ−E0)
with f(x) = (x − Emin)/a − W′ and a = (Emax − Emin)/2W′.
Emin (Emax) is the smallest (largest) transition energy. The
ground states of Ĥ and −Ĥ are calculated respectively by the
standard DMRG sweep algorithm3 to obtain the lowest and
highest eigenenergy of the Hamiltonian, which determines Emin
and Emax. If the transition occurs between spaces of different
quantum numbers, the quantum number restrictions are
considered to make the frequency window Emax − Emin as
small as possible for a faster convergence of the Chebyshev
expansion. After that, the spectral function eq 1 can be
expanded by the so-called Chebyshev expansion,
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This expansion becomes exact in the limit of N → ∞;
otherwise, a damping factor gn should be used to eliminate the
Gibbs oscillations because of finite order of expansion.31 N
steps of Chebyshev expansion employing Jackson damping31

yield a spectral function with Gaussian broadening:26

η ω π η η′ = − ′ = · ′
N

a1 ,2
(4)

Throughout the whole process of CheMPS, μn is the key
quantity which is called the Chebyshev moment. The
Chebyshev polynomials Tn(ω′) and Tn(Ĥ′) in eq 2 and eq 3
are obtained following the recurrence relation:

= −+ −T x xT x T x( ) 2 ( ) ( )n n n1 1 (5)

with T0(x) = 1 and T1(x) = x. To prevent from the exponential
growth of bond dimensions, each vector |ψn⟩ is approximated
by |ψn

M⟩ in terms of MPS with fixed virtual bond dimension M
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Xi is the orthogonality center of the MPS. Ĥ′ is factorized into
a matrix product operator (MPO).32 Equation 6 is graphically
shown in Figure 1. The approximation made by using |ψn

M⟩ will
induce accumulated errors, and thus the recurrence relation
will gradually break down with the increasing order N of
expansion. Therefore, we introduce a post-canonical orthogon-
alization method for improvement.
The orthogonal vectors are assumed to be the linear

combination of the primitive N Chebyshev vectors,

∑ ψ|Ψ ⟩ = | ⟩
=

−

Cn
i

N

ni i
0

1

(7)

with the effective Hamiltonian in the Krylov space spanned by
these orthogonal vectors,

∑ ψ ψ⟨Ψ | ̂ ′|Ψ ⟩ = * ⟨ | ̂ ′| ⟩
=

−

H C C Hm n
i j

N

mi nj i j
, 0

1

(8)

the eigenvalues ωn′ and eigenvectors |ϕn⟩ of the effective
Hamiltonian are readily obtained by exact diagonalization. The
question is how to get the combination coefficients, i.e., the C
matrix. First we diagonalize the overlap matrix S of the
primitive Chebyshev vectors (Sij = ⟨ψi|ψj⟩) by U

†DU, where D
is the diagonal matrix of the eigenvalues of S. Then the C
matrix is calculated by UD−1/2. This kind of orthogonalization
scheme was known as canonical orthogonalization,33 which
was used in electronic structure methods for the orthogonal-
ization of the atomic orbitals. In the following context, our
newly proposed CheMPS combined with canonical orthogon-
alization is abbreviated as coCheMPS. So far the spectral
function can be computed in two approaches: (1) Directly
determine the poles and the corresponding transition
amplitudes from the eigenvalues and eigenstates of effective
Hamiltonian. If necessary, a Gaussian or Lorentzian broad-
ening can be applied.

Figure 1. Diagram expression of (one-site) variational optimization of Chebyshev vector |ψn⟩ for a given bond dimension M based on the
recurrence relation. L (R) denotes left (right)-canonical matrices.
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(2) Perform a second Chebyshev expansion (eq 2) in the
effective Krylov space of eq 8 with negligible numerical cost.
This second approach becomes equivalent to the first one with
infinite order of expansion. It is worth mentioning that, unlike
Lanczos vectors, the Chebyshev vectors are not orthonormal in
principle. The post-orthogonalization is aimed at finding a set
of orthonormal vectors in the Krylov subspace to construct an
effective Hamiltonian, with which the Chebyshev recurrence
relation can be accurately preserved. This accounts for the
increased accuracy of the spectral functions, as will be
discussed later. Since the dimension of the effective Krylov
space is often of O(102−103) that is exactly diagonalizable, the
first approach above is preferred in practice. Apart from our
one-shot canonical orthogonalization approach, one previously
proposed iterative Gram−Schmidt orthogonalization approach
is worth mentioning,18,29

∑ ψ|Ψ ⟩ = − |Ψ ⟩⟨Ψ | | ⟩
<

i

k
jjjjjj

y

{
zzzzzzc 1n n

m n
m m n

(10)

where cn is the normalization constant. Equation 10 is
apparently not practical to carry out explicitly in the context
of MPS otherwise one has to do many times of compressions
each time after addition of several vectors in eq 10. Instead,
|Ψn⟩ =∑i

nCni|ψi⟩ is assumed (note that the range of summation
is different from eq 7), and an iterative formula18 for Cni is
rigorously derived (see the Supporting Information section
S1), which is mathematically true but in fact may become
problematic since it is still an iterative algorithm and involves

so many summations of finite precision float point numbers
that easily suffers from the round-off error. This becomes even
worse when there are strong linear dependencies between the
primitive Chebyshev vectors.
In the following parts, we selected three different systems

that are of interest to the physical and chemical community to
show the strengths and weaknesses of coCheMPS in different
problems. We first calculate the dynamic structure factor of the
one-dimensional (1D) spin-1/2 XY model. The XY model has
been extensively employed as the model system for magnetic
materials,34,35 and the dynamic structure factor Szz(k, ω)
corresponds to the experimentally measured inelastic neutron
scattering spectroscopy characterizing the atomic motions as
well as the magnetic excitations and spin correlations,36
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−
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where Si
x, Si

y, Si
z is the real space spin operator of the ith site and

we choose the open boundary condition and the spin-operator

in k space is defined by = ∑
+

S ki Ssin( )k
z

L i
L

i
z2

1
with the

quasi-momentum k = πn/(L + 1) and n = 1, ..., L. The 1D XY
model is exactly solvable with the Jordan−Wigner trans-
formation into free fermions,37,38 which serves as an ideal
platform for benchmarking. To illustrate the effectiveness, we
compared the spectral function S(π, ω) from traditional
CheMPS and coCheMPS using M = 32 with the expansion
order of N = 300, as shown in Figure 2(a). The results of
coCheMPS are from a second Chebyshev expansion based on
the effective Hamiltonian. With the same expansion order,
coCheMPS is obviously better than CheMPS in achieving
higher precision of peak positions and higher resolutions in the

Figure 2. (a). S(π, ω) for the 1D XY model with L = 24 using CheMPS and coCheMPS. (b). The overlap matrix with elements = ⟨Ψ|Ψ⟩ij i j

using the double precision arithmetics39 by iterative Gram−Schmidt orthogonalization (left panel), canonical orthogonalization (middle panel),
and using the quadruple precision40 by iterative Gram−Schmidt orthogonalization (right panel).
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whole frequency window and removing the ghost peak
(between the first and second peak) that arises because of
the approximated recurrence relation in the original CheMPS.
Note that the peaks corresponding to higher frequencies are
less accurate for both CheMPS and coCheMPS, which is the
common character for these iterative algorithms. The most
prominent advantage of canonical orthogonalization over the
previous iterative Gram−Schmidt approach29 is illustrated by
checking whether the orthogonalization is fully achieved. The
image display of the overlap matrix = ⟨Ψ |Ψ ⟩mn m n between the
newly obtained “orthogonalized” vectors are graphically shown
in Figure 2(b). A successful orthogonalization should result in
an identity matrix, as depicted in the middle and right panels of
Figure 2(b). The left panel of Figure 2(b) shows that, if
adopting the common double precisions, the iterative Gram−
Schmidt orthogonalization has already broken down from the
tenth vector. The correct orthogonalization will recover only
when the unusual quadruple precision is adopted (right panel).
It indicates that the Gram−Schmidt orthogonalization
algorithm is numerically unstable. coCheMPS with canonical
orthogonalization is in comparison numerically stable, and the
identity of is rigorously guaranteed with double precision
(middle panel) after even up to 500 steps.
As mentioned before in eq 9, once the effective Hamiltonian

is obtained, the spectra can be directly computed using the
eigenvalues and eigenstates. We show the convenience of
doing so in Figure 3 for a longer chain (L = 50). Figure 3
shows the spectral function S(π, ω) for a 50-site XY model by
using CheMPS and coCheMPS with different bond
dimensions. As for CheMPS, the peaks especially in the
lower frequency region become more accurate but the spectral
functions in the higher frequency region are barely improved
by increasing the bond dimension from M = 64 to M = 128

due to insufficient order of expansion, in accordance with the
relations between the spectral resolution and expansion orders
in eq 4. It means that the two requirements to achieve a high-
resolution spectral function for traditional CheMPS are large
enough bond dimensionM that controls the accuracy and large
enough expansion orders for desired resolution. However, a
high order of expansions is expensive and may lead to further
loss of accuracy as a result of MPS compression after each
expansion. In other words, one always wants the expansion
order as small as possible. By doing canonical orthogonaliza-
tion, coCheMPS with a moderate expansion order is able to
fully resolve higher accuracy. We mainly discussed the peak
positions, as for the spectral weight, we demonstrate the
correctness by giving the finite-size scaling results using the
smooth estimation method,29 which shows good agreement
with the exact result for infinite chain (see Figure S1).37,38

The second system we choose is a hydrogen chain, which
has become the prototypical strongly correlated molecular
system to benchmark electronic structure methods.41,42 It is
the first time that CheMPS is applied to ab initio electronic
Hamiltonian. The simulations of spectral functions including
the linear spectra such as photoelectron spectra,11,14 nonlinear
spectra such as X-ray Raman spectroscopy13 of strongly
correlated molecular systems have been long-standing tasks.
coCheMPS has the advantage that it not only can calculate the
spectral function but also can directly calculate the excitation
energy and excited states. In comparison, other numerically
exact DMRG-based methods including TD-DMRG and
DDMRG can only give spectral functions with finite
broadening width. Especially for DDMRG, smaller broadening
width often leads to slower convergence. Therefore,
coCheMPS is expected to be superior to TD-DMRG and
DDMRG in molecular systems in which the electronic states

Figure 3. Comparison of coCheMPS and CheMPS in the calculation of S(π, ω) and Ωn for the 1D XY model with L = 50, N = 300 using different
bond dimensionsM. The stemmed lines correspond to the transition amplitude Ωn of the discrete poles. The dotted vertical lines correspond to the
positions of exact excitation energies.
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are commonly discrete. The second quantized form of the
quantum chemistry ab initio electronic Hamiltonian is

∑ ∑= +† † †H h a a g a a a a
1
2ij

ij i j
ijkl

ijkl i j k l
(13)

where a† and a are the electron creation and annihilation
operators and the subscript indices i, j, k, l run over all spin
orbitals. The one-electron integral h and two-electron integral g
are calculated with the minimal STO-6G atomic orbitals after
Löwdin orthogonalization11 by PySCF.43,44 Here we calculate
the photoelectron spectra of a hydrogen chain with 10 equally
spaced (r = 1.8 Bohr) atoms. The photoelectron spectrum
writes

ω δ ω= ⟨ | − ̂ + | ⟩†S a H E a( ) 0 ( ) 0ij j i0 (14)

i is the index of localized orbital.
We assess the performance of coCheMPS by comparing it

with other DMRG-based methods for spectral functions. The
Lanczos MPS with reorthogonalization18 is the most capable
competitor of coCheMPS, both of which employ three-term
recurrence relations to build effective Krylov spaces. Shown in
Figure 4(a) is the density of states (Sii(ω)) at the central site of
the chain for different bond dimensions. The results of full
configuration interaction (FCI) calculated by PySCF are used
as the reference. coCheMPS gives certainly better results than
Lanczos MPS with a much faster convergence rate with M for
both the positions of poles and the corresponding amplitudes.
Figure 4(a) shows that the results of coCheMPS obtained with
M = 32 (N = 100) (top panel) are nearly converged, especially

at low frequencies, and further with M = 64 (N = 100) (middle
panel) bring convergence for virtually all frequencies except for
high frequencies with very small amplitudes. The results are
slightly improved by using M = 128 (N = 500) (lower panel);
those poles with near-zero transition amplitudes can be
targeted by taking more Chebyshev vectors (see Figure S2).
In comparison, the accuracy of Lanczos MPS is quite poor.
With M = 32, only Krylov subspace consisting of at most 25
orthogonalized vectors can be constructed in Lanczos MPS,
and more vectors will make the results even worse. It implies
that the representation of Lanczos vectors as MPSs is less
effective than Chebyshev vectors and thus the three-term
recurrence relation of Lanczos vectors breaks down rapidly. As
a result, several poles even in the low-frequency region were
not fully captured by Lanczos MPS. The results were only
slightly improved by increasing the bond dimension to 512
(see Figure S3.).
We also compare coCheMPS with other state-of-the-art

numerically exact methods based on DMRG in time domain
(TD-DMRG) and frequency domain (DDMRG), as shown in
Figure 4(b) and Figure 4(c). The computed density of states
are with a finite Lorentzian broadening width (η = 0.005 au)
by using different bond dimensions (M = 32, 64, 128) for
different methods. All TD-DMRG calculations adopt the time-
dependent variational principle with projector-splitting evolu-
tion scheme45,46 with time step of dt = 0.1 au and total time of
1000 au. coCheMPS employs N = 400 Chebyshev vectors to
build the Krylov space. As shown in the upper panel of Figure
4(b), for bond dimension of M = 32, coCheMPS is already
able to give nearly exact spectra as compared with TD-DMRG,

Figure 4. (a) The transition amplitudes Ωn and transition energies (in unit of a.u.) computed by (co-)Lanczos MPS and coCheMPS with different
bond dimensions (M = 32, 64, 128). (b) Density of states computed by coCheMPS(blue) and TD-DMRG(red) withM = 32, 64, 128. (c) The first
six peaks using DDMRG (M = 32, 64, 128). (d) The time cost for obtaining whole spectral functions using TD-DMRG and coCheMPS and the
averaged time for one frequency using DDMRG.
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except for the high-frequency region. coCheMPS reaches
convergence with complete overlap with the FCI result by
further increasing M to 64 (middle panel of Figure 4(b)). In
comparison, the error of TD-DMRG with M = 32 is large for
the whole frequency region and it improves with larger M = 64
and finally converges with M = 128. As for DDMRG, to obtain
the full spectrum, the response function should be calculated
independently at each frequency point. To save computational
time, we only calculate the response functions at frequencies
embodied in the first six peaks. This feature is also one of the
advantages of DDMRG that an approximated method can first
calculate the entire profile of the spectrum and then DDMRG
can refine regions of special interests. Because our DDMRG
algorithm47 involves the exact calculation of Ĥ2 that requires
lots of memory, for the calculation of M = 128, the
Hamiltonian is approximated by discarding the near-zero
two-electron integrals (|gijkl| < 10−5) in order to reduce the size
of MPO. The error introduced by this approximation is
negligible. The results show that the convergence rate of the
bond dimension M for DDMRG is even slower than TD-
DMRG since the peak intensities are far from converged for M
= 64, as shown in Figure 4(c). Finally, we show the
comparison regarding the computational time cost for different
methods. The platforms are Intel(R) Xeon(R) Silver 4210R
CPU @ 2.40 GHz with NVIDIA Tesla V100 GPU for CPU-
GPU heterogeneous calculations.46,47 In Figure 4(d), we show
the total time for obtaining the spectral functions in Figure
4(b) using TD-DMRG and coCheMPS by a single GPU card,
as well as the averaged time for one frequency point calculation
in Figure 4(c) using DDMRG. It is observed that coCheMPS
is dramatically faster compared with other methods. It seems

counterintuitive that the computing time slightly decreased
when increasing M = 32 to M = 64. It is because the case of M
= 64 needs a smaller number of sweeps to converge in the
process of variational compression (eq 6) for Chebyshev
vectors, which leads to a reduction of computing time. TD-
DMRG undergoes a rapid increase in time cost when
increasing bond dimensions. DDMRG is the most expensive
one even concerning the calculation of only one frequency.
The time cost of DDMRG using M = 128 is not shown since it
adopts an approximated MPO. We remark that the
comparisons for different methods made above are quite fair
under the same architecture of algorithm implementations,
while all of them can be further improved regarding the
problems investigated, for instance, spin adaptation can be
adopted for more effectiveness.11,48

Besides the spin and fermionic systems, we also apply
coCheMPS to the emission spectrum of molecular aggregates
with electron−phonon coupling at finite temperature. The
main difference is that in the electron−phonon coupled
systems, the density of states is huge because of the vibrational
degrees of freedom. The formulation is slightly changed at
finite temperature by replacing the ground state |0⟩ in eq 1
w i t h the t he rma l equ i l i b r i um den s i t y ma t r i x

ρ =β
β− ̂ Ze /H1/2 /2 and replacing (Ĥ − E0) in eq 1 with

the Liouville superoperator; for details see ref 47. The
Frenkel−Holstein exciton Hamiltonian is widely used to
describe the molecular aggregates with excitonic coupling
and exciton−phonon coupling,

Figure 5. Emission spectra of 10-site molecular aggregate at 298 K by different methods (M = 32). The upper panel belongs to the system with one
fast mode for each molecule and the lower panel belongs to the system with one fast and one slow mode for each molecule. The frequency axis is in
units of 1400 cm−1. The stemmed lines are discrete transition amplitudes Ωn calculated by coCheMPS (N = 500 for the upper panel and N = 1500
for the lower panel).
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where εi is the adiabatic excitation energy of the ith molecule
(set to be 0 here), Jij is the intersite electronic coupling
between the ith and jth molecules, ωin and gin refer to the
harmonic frequency and dimensionless electron-vibrational
coupling strength of the nth normal mode of the ith molecule.
This model assumes that the electronic excited state of
aggregates is a linear combination of the local excited states of
a single molecule (called Frenkel exciton), and the nuclear
motions are described by a collection of independent harmonic
vibrations.
Two different model systems are chosen to assess the

performance of coCheMPS. The first system only contains a
fast symmetric vinyl stretching mode for each molecule (ω =
1400 cm−1, Huang−Rhys factor S = g2 = 1), which
characterizes the vibronic progression in the experimental
spectra of a great many molecular aggregates.49 The second
system contains one additional slow intramolecular mode (e.g.,
the torsional motion of phenyl rings in conjugated oligomers)
with ω = 140 cm−1 and Huang−Rhys factor S = 5.50,51 In both
the two model systems, a chain of 10 molecules with nearest-
neighbor excitonic coupling J = 700 cm−1 is considered. The
number of simple harmonic oscillator basis is chosen to be 5
and 20 for the fast mode and slow mode separately. The
emission spectra at 298 K are shown in Figure 5. The results of
TD-DMRG are convergent with respect to M and total
evolution time and thus will be used as the reference. It is
observed in the upper panel that by doing canonical
orthogonalization, the accuracy of CheMPS is improved.
Despite this, it is suggested that coCheMPS may not be very
well suited to study the spectral functions of complex
electron−phonon systems (as shown in the lower panel),
which can be illustrated in two aspects. First, in order to obtain
a converged result, only 500 Chebyshev vectors are required
for the system with only one fast vibrational mode (the upper
panel), while 1500 vectors are required when slow modes are
also included (the lower panel). This is because the
involvement of slow modes makes the density of states much
denser (the brown lines in Figure 5). If there are a huge
number of poles that should be targeted accurately, the Krylov
space should also be huge. Second, the spectral window shown
above only constitutes a very small portion (∼8%) of the
whole window of transition energies (the transition amplitudes
are negligible in the rest part). It has been proposed to employ
an effective spectral window26 rather than the whole window of
transition energies to perform the rescale (into [−1, 1]) and
the following Chebyshev expansion (eq 2), which will increase
the resolution with smaller expansion terms (see eq 4) at the
cost of increasing entanglement (this approach nevertheless
requires a further step for energy truncation,26 which is
relatively empirical). On the contrary, the involvement of slow
modes with large electron−phonon couplings makes the time
correlation function in the time domain decay much faster (see
Figure S4), which means that only a shorter evolution time is
required and is therefore more favorable for TD-DMRG.
In conclusion, we proposed to combine the Chebyshev

matrix product states with the post-canonical orthogonalization
method, which significantly improves the accuracy of the

original algorithm and decreases the expansion orders for a
given resolution. With the orthogonalization of primitive
Chebyshev vectors, an effective Hamiltonian can be efficiently
constructed and eigenvalues and eigenstates can be directly
calculated. This canonical orthogonalization exhibits excellent
robustness and easy implementation compared with the
previously proposed iterative Gram−Schmidt orthogonaliza-
tion. We examine the effectiveness by applying it to calculate
the dynamical spin structure of spin chains and for the first
time applying it to ab initio quantum chemistry Hamiltonian.
We made a solid benchmark by comparing the performance of
coCheMPS with other existing matrix product states based
methods in the context of ab initio Hamiltonian, and it turns
out that coCheMPS is able to achieve both higher accuracy
and smaller computational resources. coCheMPS is particularly
favored for the low excited states of systems with sparsely
distributed eigenstates such as electronic states of molecules,
which is due to the common property of Krylov space
methods. However, it should be noted that coCheMPS is not
effective to handle systems with dense states, such as the
electron−phonon coupled systems, for which more Chebyshev
vectors are required for convergence. Compared to
coCheMPS, DDMRG is good at targeting high frequency
regions especially when the fine structures are of interest.47

TD-DMRG is suitable for broad spectra, which indicates a fast
dephasing of the correlation function in the time domain. The
following are for outlooks. The essential of both coCheMPS
and Lanczos MPS is building a Krylov space in a recursive way.
They are mathematically equivalent, but the entanglement of
recursive vectors is different which influences the effectiveness
of MPS compressions. For instance, a narrowed effective
energy window for Chebyshev expansion is beneficial for
higher resolution, which, however, leads to increased
entanglement.26,27 Besides Chebyshev polynomials, there are
other kinds of polynomials with different recurrence
relations,52 but the performance is unclear. Furthermore, to
make the entanglement of recursive vectors as small as
possible, it may be possible to construct an adaptive recurrence
relation instead of a fixed one.
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