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Abstract: Theoretical and computational chemistry aims to develop chemical theory and to apply numerical
computation and simulation to reveal the mechanism behind complex chemical phenomena via quantum
theory and statistical mechanics. Computation is the third pillar of scientific research together with theory and
experiment. Computation enables scientists to test, discover, and build models/theories of the corresponding
chemical phenomena. Theoretical and computational chemistry has been advanced to a new era due to the
development of high-performance computational facilities and artificial intelligence approaches. The ten-
dency to merge electronic structural theory with quantum chemical dynamics and statistical mechanics is of
increasing interest because of the rapid development of on-the-fly dynamic simulations for complex systems
plus low-scaling electronic structural theory. Another challenging issue lies in the transition from order to
disorder, from thermodynamics to dynamics, and from equilibrium to non-equilibrium. Despite an increas-
ingly rapid emergence of advances in computational power, detailed criteria for databases, effective data
sharing strategies, and deep learning workflows have yet to be developed. Here, we outline some challenges
and limitations of the current artificial intelligence approaches with an outlook on the potential future di-
rections for chemistry in the big data era.

Keywords: Artificial intelligence; deep learning; density functional theory; emerging technologies; new
directions in chemistry research; theoretical and computational chemistry.

Overview of theoretical and computational chemistry

Theoretical and computational chemistry is a branch of chemistry that uses mathematical and physical
methods such as thermodynamics, statistical mechanics, and quantum mechanics to explain chemical phe-
nomena and processes via numerical computation and computer simulation [1–5]. It combines theoretical
approaches in physics and chemistry and efficient computer programs to calculate the structures and prop-
erties of chemical systems. Of course, chemists have been doing computations for centuries, but the term
“computational chemistry” is a natural product of the digital age. A significant increase in computing power
blurs the boundary between theoretical chemistry and computational chemistry. As Dirac once said [6]: “The
fundamental laws necessary for the mathematical treatment of a large part of physics and the whole of chemistry
are thus completely known, and the difficulty lies only in the fact that application of these laws leads to equations
that are too complex to be solved.”
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Great progress has been made in theoretical and computational chemistry because of the improvements
and upgrades in computer facilities together with the development and innovation of efficient algorithms. An
increasing amount of attention is paid to this research field. Theoretical and computational chemistry deepens
our understanding of the chemical phenomenon and enables materials and manufacturing processes to be
designed more efficiently.

The basic theory of theoretical and computational chemistry comes from quantum mechanics, classical
Newton’s mechanics andMaxwell’s electrodynamics, and statistical mechanics. All chemical phenomena and
processes involving electronic structure and dynamics (such as the breaking and formation of chemical bonds)
are solved by quantum mechanics. For their contributions to quantum chemistry computation, Walter Kohn
and John Pople won the Nobel Prize in chemistry in 1998. The field of molecular mechanics was developed
based on the force field model and the Newtonian mechanics coupled with statistical mechanics. In the same
system, the computational complexity of the quantum mechanical model is much higher than that of the
molecular mechanics model due to the superposition description of the quantum state. This is because the
molecular mechanical model takes the atom as a classical object while the quantum mechanical model also
needs to consider the structure andmotion of electrons.Martin Karplus,Michael Levitt, andAriehWarshelwon
the 2013 Nobel Prize in chemistry for combining quantum mechanics and classical Newtonian mechanics to
construct a multi-scale calculation method for complex systems.

More recently, artificial intelligence technologies such asmachine learning andbig data have been an area
of intense study. These emerging artificial intelligence technologies have been introduced into theoretical and
computational chemistry with great success. Currently, artificial intelligence in chemistry includes the auto-
matic generation of literature abstracts in chemistry using natural language processing technology [7],
intelligent retrievalmethods in chemical data [8], automation and robotics in chemical laboratories [9, 10], and
chemical applications of neural network methods [11]. Of these, the most active and successful applications
identify chemical structures of unknown compounds from spectral data via deep learning [12]. Here, the
spectral data include infrared, mass spectrometry, nuclear magnetic resonance, two-dimensional, and high-
dimensional nuclear magnetic resonance data [13]. Artificial intelligence also plays an important role in
chemical synthesis [14, 15]. There are countless chemical reactions in nature, and strategies to plan a novel and
feasible synthetic route are a big problem that puzzles chemists. In the past, researchers were challenged to
design a chemical synthesis route because the chemical reaction was infinitely varied under different con-
ditions. Based on big data and artificial intelligence, computers can help researchers design chemical syn-
thesis routes that improve the efficiency of scientific research in developing new drugs, and other chemical
compounds [16].

Machine learning and deep learning have continuously produced new applications in the fields of syn-
thetic chemistry, medicinal chemistry, etc. This has led to revolutionary changes in chemistry. For example,
Segler et al. [17] collected almost all the chemical reactions published in the past few decades nearly 12.5
million reactions. The team then successfully applied a deep neural network andMonte Carlo tree algorithm to
design a new chemical synthesis route. According to the method reported here, it only takes 5 s to design a
molecular synthesis route via artificial intelligence. Granda et al. [18] reported an organic synthesis robot that
can predict and analyze chemical reactions faster than traditional methods via machine learning algorithms.
After training the model with 10 percent of the chemical reactions, the intelligent robot can then predict the
chemical reactivity with an accuracy of 86 %.

New chemical reactions can also be discovered using real-time data. Popova et al. [19] developed a novel
computational strategy termed ReLeaSE (Reinforcement Learning for Structural Evolution). ReLeaSE can
generate targeted chemical libraries of novel compounds with desired properties. These are of great impor-
tance in drug discovery where the potential molecules should be optimized according to their properties such
as selectivity, solubility, and potency. O’Connor et al. [20] developed a database containing various catalysts
with different properties where machine learning and quantum chemistry are combined to search for hidden
patterns in the database with the purpose of optimal molecular design of cheaper andmore efficient catalysts.
There is no doubt that artificial intelligence is a key step in the digitization of chemistry. This can lead to real-
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time searching and the efficient design of chemical molecules, a significant reduction in cost and time, and
safety improvements.

In this short perspective, we describe the future opportunities and challenges for theoretical and
computational chemistry. The discussion includes electronic structure theory, chemical dynamics, molecular
design and synthesis planning, complex system, and deep-learning in chemistry.

Electronic structure theory

Density functional theory

Density functional theory (DFT) is a quantummechanicalmethod that studies the electronic structure ofmulti-
electron systems. It has been widely used in chemistry, physics, and materials science [21–23]. In the frame-
work of the Kohn-Sham formulation of DFT, themost difficult many-body problem due to electron interactions
is reduced to a problem of independent electrons moving in an effective potential field [24]. This effective
potential field includes the effects of the external potential and Coulombic interactions between electrons
including exchange and correlation interactions.

Since 1970, DFT has been widely used in solid-state physics calculations. Density functional theory using
local density approximation (LDA) with Slater exchange and VWN correlation from a uniform electron gas
usually leads to very satisfactory results with very low computational cost especially when compared with
other methods dealing with the many-body problems in quantum mechanics [25]. However, LDA offered less
satisfactory results for a molecule than for solids due to the inhomogeneity in electron density. The Parr-Yang
book is a milestone in DFT with faster development of better exchange correlation functions suitable for
chemical problems [23]. The development of an exchange-correlation function began with LDA and then
moved to the general gradient approximation (GGA) such as PBE and PW91. The field progressed with meta-
GGA in consideration of orbital kinetic energy and exact exchange such as TPSS andM06-L. Hybrid GGA is now
the most widely employed and is represented by B3LYP, hybrid meta-GGA such as TPSSh and M06-2x, and
double hybrid-GGA containing unoccupied orbital contributions such as XYG3 and B2PLYP. Savin first pro-
posed to separate long and short range Coulombic interactions [26] that were long ignored by the community
but later found to be important in describing the charge transfer excitation and response properties [27]. Range
separation for the functional with an optimal ω (the range separation parameter) is now seen in daily practice
for modeling the molecular energy materials (often with charge transfer excitations).

One of the main challenges of DFT is to maintain its simplicity while improving its accuracy or expanding
its functionals. This is also a problem faced by the entire field of computer science. It is important to keep the
theory and calculation concise and to ensure the computational costs are within an acceptable range because
this leads to proper density functional approximations. The great success and popularity of DFT lie in that
some simple approximations work very well for the calculations of the structural and thermodynamic prop-
erties of molecules and solids [28–30]. However, there are still many qualitative failures of DFT which result
from the inappropriate approximations of the exchange-correlation functionals. The core issue that how to
construct the universally applicable functionals has been elusive, which is full of challenges.

To describe the chemical phenomena and processes more comprehensively, it is necessary to jump out of
the equilibrium geometries of molecules and consider the weak interactions between molecules and the
transition states in chemical reactions. It remains a great challenge to describe van der Waals forces, covalent
bonds, and reaction barriers correctly and efficiently.

It is known that all semilocal density functionals fail to describe the long-range dispersion interactions
[31]. Various approaches were proposed to include dispersion corrections into DFT, such as DFT-D-type
methods [32–36], vdW-DFs [37, 38], 1ePOT [39–41], and so on. Among them, the DFT-D method proposed by
Grimme (DFT-D1 [32], DFT-D2 [33], DFT-D3 [35], and DFT-D4 [36]) is the most widely-used one. The DFT-D
method solves the dispersion problem of DFT in a rather general way and the correction can be coupled in a
simple form to standard density functionals. The DFT-D3 has been refined with higher accuracy, applies to a
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broader range of applicability, and adopts less empiricism [35]. It is just now replacing DFT-D2 as the
worldwide de facto standard in dispersion corrected DFT calculations. The DFT-D method opens completely
new possibilities for the application of DFT in the areas of condensed matter, materials science, and
biochemistry where dispersion effects are often of utmost importance [32–36].

The empirical elements are embedded in almost all of the current dispersion corrections in different ways.
Hence, it is essential to perform a systemical benchmark on experimental or reliable theoretical data [42]. For
the intramolecular and intramolecular interactions, the gold standard is the WF-based singles and doubles
coupled-cluster method with perturbative triples (CCSD(T)). The method can provide accurate results, whose
error is less than 1 kcal/mol for typical chemical reactions [43, 44]. The domain-based local pair natural orbital
coupled-cluster method, abbreviated as DLPNO-CCSD(T), is an approximation to CCSD(T) and it has the
following advantages: (1) Accurate. DLPNO-CCSD(T) recovers more than 99.9 % of the CCSD(T) correlation
energy. Reaction energies are calculated with amean deviation of 0.3 kcal/mol for 12 test reactions ofmedium-
sized molecules [45]. (2) The computational cost of DLPNO-CCSD(T) is comparable to DFT but scales linearly
with the system size [45, 46]. (3) DLPNO-CCSD(T) operates like a black box without adjusting any complicated
parameters.

The majority of the calculation failures of DFT result from its underestimation of the reaction barrier,
dissociation energy of ionic molecules, energy gaps, excited states, intermolecular interactions, and charge
transfer excitation. Meanwhile, DFT overestimates the binding energies of charge transfer complexes and the
response to an electric field in molecules and materials [47]. Both the underestimation and overestimation
result from the same origin, i.e., the delocalization error of the approximated functionals. Due to the discrete
nature of electrons, the exact energy of the atom as a function of the charge should be a straight-line inter-
polation between the integers [48]. Yang et al. found that there were delocalization errors when the fractional
charge deviates from a linear relationship. They further found that the deviation of fractional spins is
responsible for static correlation-related errors, e.g., a strong correlation effect in oxide andmagnetic systems,
degenerate states, and bond-breaking [49].

Langreth-Perdew’s adiabatic connection-fluctuation-dissipation (ACFD) theorem is derived from density
fluctuations and has become an important foundation for systematic improvements in functionals frommany-
body theory, e.g., connecting with the random-phase approximation (RPA-DFT). Parallel to density
fluctuation-based ACFD, Yang et al. proposed another adiabatic connection based on a pairing matrix fluc-
tuation that led to the particle-particle RPA formulation of DFT and ppRPA-DFT. The ppRPA-DFT demonstrates
the nearly linear fractional charge behavior and thus the delocalization errors are minimized: the ppRPA-DFT
correctly describes the van der Waals interaction and has almost no static correlation error for single-bond
systems [50]. Both the occupied and unoccupied Kohn-Sham orbitals should be considered. Thus, learning
from wavefunction theory in dealing with the correlation problem is critical to developing radically different
functionals to advance DFT.

Post-Hartree-Fock and beyond

Thewavefunction basedmethods are increasingly popular because of their systematic accuracy improvements
and the development of efficient low-scaling computational techniques. Wavefunctions also have value in
fields requiring high accuracy such as chemical reaction dynamics. Wavefunction theory starts with the self-
consistent field Hartree-Fock (HF) mean-field theory, which is the origin of the modern ab initio quantum
chemistry. Later, many post-Hartree-Fock methods have been proposed to treat the correlation effects
including configuration interaction (CI), perturbation (MPn), coupled-cluster (CC), multiconfiguration self-
consistent field (MCSCF), complete active space self-consistent field (CASSCF), and CAS perturbation. Multi-
reference CC remains very time-consuming.

The explicit correlation methods (R12 and F12) can incorporate the interelectron distance r12 into the
wavefunction ansatz. This idea was originally developed by Hylleraas already in 1929 for the helium atom. It
can correctly describe the cusp behavior of the wavefunction [51]. R12 was first introduced in MP2 and then
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made popular in coupled cluster theory. Later, a Slater-type correlation F12 form was postulated, which could
be fitted through a linear combination of a few Gaussian-type functions. It is still a challenge to formulate an
analytical gradient with an explicit correlation form.

The introduction of quantumMonte Carlo (QMC) into traditional wavefunction theory by the Prof. Ali Alavi
of Cambridge into perturbation theory was amajor step forward. There was later full configuration interaction
QMC (FCIQMC) [52]. The imaginary time Schroedinger equation becomes a diffusion equation in QMC. The
required antisymmetric property is violated because the lowest energy solution is generally nodeless and
symmetric. This has long been a significant problem for QMC. Alavi suggested performing a long-time inte-
gration in the space of a Slater determinant; there was a propagation step via population dynamics. The
“walker” in the simulation represents an instantaneous wavefunction that carries a sign and a pair of walkers
coinciding with the same determinant but with different signs; these are removed from the simulation. Such a
new QMC algorithm in the Slater determinant space can efficiently converge to a full CI energy. This approach
was quickly applied to coupled cluster even with periodic conditions for solids with great success [53]. The
results offered unprecedented accuracy.

The density matrix renormalization group (DMRG) method was initially proposed in condensed matter
physics for strongly correlatedmodels [54] and has been quickly applied to quantum chemistry [55, 56]. DMRG
can now handle a much larger active space than conventional CASSCF [57]. DMRG iteratively optimizes the
eigenvectors of the reduced density matrix, which are used as approximate natural orbitals for constructing a
full CI-like but much lower dimension Hilbert space. Recently, DMRG ansatz is understood as amatrix product
state (MPS) formalism from applied mathematics and quantum information theory. The optimization pro-
cedures are actually consecutive singular value decompositions andmaintain a few important singular values
in each step. The International Academy of QuantumMolecular Science has twice awarded the annual (single)
medal for this field. In 2010, Garnet KL Chan was awarded the IAQMSmedal with citation “for his outstanding
contribution to the density matrix renormalization group theory of molecular system”, and Takeshi Yanai in
2013 “for his development of novel approaches to incorporate dynamical correlation into DMRG using ca-
nonical transformation theory”.

The most recent remarkable advances are made for the time-dependent MPS formalism for finite-
temperature problems, which is quickly emerging as a promising method to deal with quantum dynamics for
complex systems [58]. In fact, the MPS ansatz along with the more recent tensor tree network state can grasp
the essential quantum entanglements, thus offering proper spaces for time evolution. The applications are
envisioned for non-adiabatic dynamics and electronic processes in complex systems such as carrier transport,
various optical spectroscopies, singlet fission, and organic light-emitting diodes.

Molecular design and synthesis planning

Molecular design

Molecular design is a hot research topic especially for materials design and drug design. The design and
optimization of these two kinds ofmolecules canbring great benefits andhave great potential value. Therefore,
related studies have dramatically stimulated the application of deep learning in related fields. However, the
process of molecular design is still very challenging because it is expensive and time-consuming considering
[49, 59, 60].

Most of today’s technologies such as batteries, aerospace, and renewable energy strongly rely on the
synthesis and application of advanced materials. Artificial intelligence has only recently begun to affect the
field ofmaterials design, and the potential impact of such data-drivenmaterials science is tremendous [61–63].
Computer-aided materials design can significantly reduce the typical cycle for the development and
commercialization of newmaterials [64]. Specifically, the integration of artificial intelligence algorithms could
help address the inverse chemical paradigm, automatically discovering the property-biased molecular
structures, and thus expediting the design of novel useful compounds [65]. However, the current material
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design faces the following challenges: (1) obscure terminology in material informatics makes it difficult for
typical material scientists to see how data-driven methods are applied to their own work; (2) limited access to
structured data and a lack of data standards; (3) absence of a mature data-sharing mechanism [66].

Synthesis planning

Synthesis planning can be divided into three parts: retrosynthesis, reaction prediction, and reaction optimi-
zation. In retrosynthesis, the product is known and the initial reagents from which it can be made are
determined. In reaction prediction, the reagents are known, and the main products are predicted. In reaction
optimization, both reagents and products are known, and the yield or efficiency of this chemical reaction can
be maximized by changing the reaction conditions [67, 68].

The application of machine learning and artificial intelligence technologies in synthesis planning has
unprecedented opportunities. Since the machine learning models could discover the hidden relationship
between the dataset and the experimental results, efficiently and relatively low-priced, it would promote the
development of retrosynthesis and replace the expensive quantum calculations. However, there are still some
urgent problems to be solved: (1) Detailed reaction data are limited. (2) The literature prefers to report only
successful reactions rather than failed ones, and access to negative reaction data is necessary formore efficient
synthesis planning [67].

Theory for complex systems

Challenges in theory and simulations of polymer science

The challenges faced by polymer theory and simulation include the following aspects: The need for design
rules for a specific functional polymeric material including hierarchical composites and biomaterials; un-
derstanding the transport process of electrons, ions, photons, and energy in polymer systems (solar cells,
living cells, batteries, sensors, and membranes); and exploring more efficient and stable processing strategy
for polymer materials with complex structures [69, 70].

Polymer processing often involves a strong flow field, temperature gradients, and other external condi-
tions that make polymer systems far away from the equilibrium state. It is a great challenge to predict the
properties of polymermaterials at themicro,meso, andmacro time or length scales. It is impractical to develop
a theory considering all variables, and thus it is very important tomake proper approximations and reasonable
coarse graining.

Electrically charged polymeric systems

Charged polymers involve a series of synthetic materials and consist of the basic unit of most functional
biomaterials. The polyelectrolytes in polymer solutions are strongly correlated in terms of both topologies and
electrostatic interactions. Moreover, there are lots of factors influencing the polyelectrolyte behaviors, such as
the charge distribution on the polyelectrolytes, the electrostatic correlations, size effects, and the polarizability
effects around charged polymers [71]. Despite the theoretical efforts devoted to the scaling theories, the
analytical theories basing on the field theory, and the liquid-state theories, there are still twomajor challenges
that need to be done. The first challenge associated with electrically charged polymeric systems is that the
dielectric properties are spatially heterogeneous, whichmeans that themean-field theory fails to describe such
a system. The second challenge is the theoretical description ofmolecular conformations or structure factors of
charged polymers in saline/salt-free solutions: the correlation length of two charged units is large enough to
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even match the size of the molecular conformation, thus coupling with the molecular conformations on larger
length scales [69, 71].

Crystallization and glass transition

Although substantial progress has been made in these classic problems in polymer physics, there are still
significant challenges in understanding the following situations. (1) The interplay between conformational
entropy (favoring disorder) and the short-range attraction between segments (favoring order) results in
extremely complex behaviors of polymer crystallization and glass transition. Such processes are far away from
the thermodynamic equilibriumand usually take place in supercooledmetastable states. The current available
theoretical models succeed in describing the polymer crystallization and glass transition processes, but fail to
predict these behaviors. Therefore, a universal theoretical framework is urgently needed to describe the
kinetics of crystallization and glass transition [72, 73]. (2) It is still far from understood about the origin of the
temperature and pressure dependences of the equilibrium dynamics and the corresponding quantitative
description of the behaviors remains to be explored. Meanwhile, the origin of the Kauzmann paradox and the
relationship between the evolution of the glass structure and physical aging are still unanswered [74]. (3) How
the chain connectivity and uncrossability affect the mechanical properties of the entangled polymer system?
(4) How to theoretically explain the special nonequilibrium state generated by the thermal history also needs to
be further understood, such as the brittle-ductile transition and glass transition [73, 74].

Nonlinear rheological behaviors of entangled polymer fluids

Nonlinear rheology is to study the mechanical behavior of materials under a large strain or rapid deformation
conditions. The stress response of materials depends on the deformation amplitude, rate, and flow field type.
Owing to the failure of the Boltzmann superposition principle, the nonlinear behavior cannot be predicted by
linear viscoelastic behavior. The development of rheological measurement technologies and structural
characterizationmethods has led to the development of nonlinear rheological experimental research. The field
moved from focusing on the study of steady-state shear properties to focusing on transient/dynamic shear,
transient tension, and even more complex flow field rheological response. The description of nonlinear
rheological behavior has also developed from empirical continuum mechanics model to molecular model.
However, there is still no universal constitutivemodel to describe all nonlinear behaviors. Therefore, a key goal
of nonlinear rheology is to understand the structural evolution mechanism and dynamic behavior under the
condition of complex flow, and to establish a relationship with rheological properties [75–79].

Deep learning in chemistry

As an extremely broad subfield of artificial intelligence, machine learning aims to solve the problems of
computer learning from data [13, 14, 80, 81]. Deep learning is a kind of machine learning that uses hierarchical
recombination technology to extract relevant information from data and then to learn the specific patterns
hidden in the data [2, 3, 68, 82, 83]. The standard workflow of machine learning from data to knowledge is
shown in Fig. 1. In the past decades, deep learning has been increasingly applied to a variety of challenging
problems in chemistry including drug and materials design, and synthesis planning [15, 80, 83].

Fig. 1: A standard workflow of machine learning.
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Accelerated computational models

Utilizing physics-based calculations, the computational models of chemistry are adopted to investigate
various properties and behaviors of the modeling system [68]. There are two different ways to apply deep
learning in these computationalmodels. The first one is to integrate deep learningmethodswith physics-based
approaches directly, which involves network training to predict the key property. The second method is to
predict properties by establishing the relationship between the molecular structure and particular properties.
The corresponding examples of the integrated physics-based approach include the prediction of force fields
[84], potential energy surfaces [85–87], and corrections of ab initio calculations [88]. Such method is more
flexible due to the physical basis, however, it has a slower speed when compared with the second method.

Quantitative structure property/activity relationships

In computational chemistry, there is an alternative approach to realize the deep learning by directlymapping a
simple representation of the consideredmolecules to the target property [68]. Such an approach can be broadly
divided into THE quantitative structure property relationship (QSPR) and quantitative structure activity
relationship (QSAR). Generally speaking, QSPR predicts the properties of molecular systems. However, QSAR
focuses on molecule activity. Both methods are employed to improve the prediction accuracy [89, 90]. The
training data available directly determines the properties which can be predicted. Therefore, the choice of the
available databases is essential, which are summarized in the excellent reviewof Butler. It should be noted that
some properties can be readily computed with DFT, such as the dipole moments, ionization energies, ground
state energies, and so on. The inclusion of computational data sets greatly maximizes the speed and enriches
the available data as much as possible.

Challenges in large-scale molecular dynamics

Progress in theoretical and computational chemistry originates from technical research and developments in
the field of materials science. Related research can directly solve practical problems leading to the so-called
social demand-driven research. Owing to the understanding of fundamental problems, researchers inevitably
have to solve these problems when they try to explain the mechanism of experimental phenomena and
processes, i.e., problem-driven research. Although the specific problems and systems studied change with
time, the current hot research topics will be gradually replacedwith new problems. Researchers always have a
strong interest in performing larger and larger simulations processing more complex systems, simulating
longer dynamics, analyzing more microscopic details, and increasing the diversity of the studied systems [66,
91, 92]. However, large-scale molecular dynamics simulations require access to multicore clusters or super-
computers that are not always available to all researchers andmore andmore researchers explore the potential
applications of GPUs consequently.

Applications in reaction prediction and optimization

The development of technologies for chemical synthesis traditionally required expert knowledge and special
laboratory practice. Artificial intelligence might solve these problems to create new knowledge more effec-
tively [15]. By putting a huge amount of experimental and related theoretical data into the computer program,
deep learning and other artificial intelligence technologies would help experimental chemists find new
important reaction routes [17]. Automation of retrosynthetic analysis has already been put into practice and
different learning methods for the prediction of reaction products are also being developed. Using the same
logic, one could also optimize reaction conditions and design natural product drugs. Further application of
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artificial intelligence technology in those fields must accelerate related research and industry [93]. Although
reinforcement learning and machine learning has been used to optimize reaction conditions, access to high-
quality, interpretable, and standardized data sets suitable for machine learning is a current bottleneck as the
literature on chemical reactions is often unstructured, exists in multiple formats, sometimes behind paywalls,
and was collected on different reaction setups [94–97].

Conclusions and outlook

We do not intend tomake a comprehensive review of chemical theory and computation, since the scope is vast
and changing rapidly. Here we have summarized some major opportunities and challenges from several
representative research fields in theoretical and computational chemistry. It should be noted that now many
experimentalists can use computational chemistry as a lab tool to supplement analysis and characterization,
thanks to the successful developments of package programs operated as a black box. The overall challenges for
theoretical chemists lie in developingmore efficient andmore accurate computationalmethods for even bigger
and more complex systems.
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