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We derive a stochastic hierarchy of matrix product states (HOMPS) for non-Markovian dynamics in an open
quantum system at finite temperature, which is numerically exact and efficient. HOMPS is obtained from the
recently developed stochastic hierarchy of pure states (HOPS) by expressing HOPS in terms of formal creation
and annihilation operators. The resulting stochastic first-order differential equation is then formulated in terms
of matrix product states and matrix product operators. In this way the exponential complexity of HOPS can be
reduced to scale polynomial with the number of particles. The validity and efficiency of HOMPS is demonstrated
for the spin-boson model and long chains where each site is coupled to a structured, strongly non-Markovian
environment.
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Many physical and chemical processes require to take the
interaction with environmental degrees of freedom (DOF) into
account [1,2]. Often some of these DOF couple strongly to the
system and exhibit a memory, i.e., they are non-Markovian.
To handle this challenging situation a variety of approaches
have been put forward [3–13]. One promising approach is
the hierarchy of stochastic pure states (HOPS) [14,15], which
is a stochastic, wave-function-based open quantum system
method, to solve the non-Markovian quantum state diffusion
(NMQSD) equation [16–22]. HOPS has been successfully
applied, for example, to study energy transfer in small pho-
tosynthetic systems [14,23], or to simulate linear [24] and
nonlinear spectroscopy [25]. HOPS consists of a set of cou-
pled first-order stochastic differential equations. For large
systems with strong coupling to several distinct environments,
HOPS still requires a substantial computational effort because
the number of coupled equations grows exponentially with the
number of effective environmental modes.

In this Letter, we show that a substantial reduction of the
computational effort can be achieved by formulating HOPS in
terms of matrix product states (MPS) and matrix product op-
erators (MPOs). The resulting stochastic hierarchy of matrix
product states (HOMPS) can be efficiently propagated [26] by
modern algorithms that have been used and tested for different
problems [27–46]. Our procedure is illustrated in Fig. 1 and
described in the following.

The open quantum system. We consider a quantum system
coupled linearly to a (infinite) set of harmonic oscillators. The
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total Hamiltonian is written as

Ĥtot = ĤS + ĤB + ĤSB, (1)

with ĤS, ĤB, and ĤSB describing the system, the bath, and
the system-bath interaction, respectively. We consider a bath
that can consist of several independent parts: ĤB = ∑J

j=1 ĤB, j

with ĤB, j = ∑
λ(

p̂2
λ, j

2 + 1
2ω2

λ, j q̂
2
λ, j ), where { p̂λ, j} and {q̂λ, j}

are the momenta and coordinates of the bath DOF. The

FIG. 1. Our strategy to construct the hierarchy of matrix product
states (HOMPS). We consider a quantum system interacting with a
thermal environment at temperature T consisting of bosonic modes
which are linearly coupled to the quantum system. After tracing
out the environmental degrees of freedom, this many-body prob-
lem is then treated using the hierarchy of stochastic pure states
(HOPS) method. From this, we transform to a stochastic effective
Schrödinger-type equation which can be solved efficiently using the
MPS/MPO representation.
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system-bath coupling Hamiltonian is taken as

ĤSB =
J∑

j=1

ĤSB, j =
∑

j

L̂ j ⊗
∑
λ, j

cλ, j q̂λ, j, (2)

where each system operator L̂ j couples to its own environ-
ment. The interaction strength between the system and the
(λ, j)th mode is quantified by the coefficient cλ, j . It is conve-

nient to define the spectral densities, S j (ω) = π
2

∑
λ

c2
λ, j

ωλ, j
δ(ω −

ωλ, j ), which describes the frequency-dependent system-bath
coupling strength of the jth bath. In the time domain, the
bath-correlation function,

α j (t ) = 1

π

∫ ∞

0
dωS j (ω)

[
coth

( ω

2T

)
cos ωt − i sin ωt

]
,

(3)
fully characterizes the influence of the environment at temper-
ature T . We use the units h̄ = kB = 1.

We are interested in the dynamics of the system which is
given by the reduced density matrix

ρ(t ) = TrB{ρtot(t )}. (4)

Here, TrB{· · · } denotes the trace over all bath DOF, and ρtot(t )
is the total density matrix. In the following, we assume a

factorized initial state ρtot(0) = ρ(0) ⊗ e−ĤB/T

ZB
with partition

function ZB = TrB{e−ĤB/T }.
To improve readability, we drop the index j and show

explicitly the derivation for a single operator L̂, which we
take to be Hermitian for simplicity, i.e., L̂ = L̂†. The case
of non-Hermitian L̂ can be easily handled along the lines of
Ref. [24].

Non-Markovian stochastic Schrödinger equation and the
hierarchy of pure states. Within the HOPS method the reduced
density operator ρ(t ) is obtained from

ρ(t ) = E{|ψt (Z
∗
t )〉 〈ψt (Z

∗
t )|}, (5)

where the |ψt (Z∗
t )〉 are vectors in the system Hilbert space

that depend on stochastic processes Zt , and E[· · · ] denotes
the average over trajectories. The Zt are complex valued and
fulfill E[Zt ] = 0 [47]: E[Zt Zs] = 0 and E[Zt Z∗

s ] = α(t − s).
To obtain the HOPS, the bath-correlation function (3) is ap-
proximated by a sum of exponentials (which we denote as
modes),

α(t ) ≈
K∑

k=1

dke−νkt (t � 0), (6)

with complex numbers νk . Then, the following hierarchy of
first-order differential equations can be derived [14],

∂tψ
n
t =

[
−iĤS + L̂Z∗

t −
K∑

k=1

nkνk

]
ψn

t

+ L̂
K∑

k=1

dk√|dk|
√

nk ψn−ek
t

− L̂†
K∑

k=1

√
|dk|

√
nk + 1 ψn+ek

t . (7)

The superscript n = {n1, . . . , nk, . . . , nK} consists of a set
of non-negative integer indices, and ek = {0, . . . , 1k, . . . , 0}.
The initial conditions are ψ0

t=0 = ψini and ψn
t=0 = 0 for n 	= 0.

The trajectories entering Eq. (5) are ψt (Z∗
t ) = ψ0

t (Z∗
t ).

Note that compared to the original derivation of HOPS [14]
we have rescaled the auxiliary vectors according to ψn

t →
(
∏K

k=1 nk!|dk|nk )−
1
2 ψn

t .
For the general case of several environments and several

system-bath operators as given in Eq. (2), for each L̂ j one
obtains the terms as on the right-hand side of Eq. (7), where all
k-dependent quantities get an additional index j. One now has
J-independent processes Z∗

t, j . The hierarchy is now labeled by
n = {n11, . . . , nk j, . . . , nKJ}. Details are presented in Sec. S3
of the Supplemental Material [48].

In practice one has to truncate the hierarchy, which can be
achieved by a suitable approximation of the terms appearing
in the last line of Eq. (7). Possible choices are, for example,
the “terminator” suggested in Ref. [14], or simply setting
these terms to zero, as we do here. To keep the number of
coupled equations reasonably small, proper truncation is an
important issue [49]. For example, for the common “triangu-
lar” truncation scheme,

∑J
j=1

∑K
k=1 n jk � Nmax, where Nmax

determines the “depth” of the hierarchy. For given J , K , and
Nmax the number of equations is then approximately given by
1+Nmax

JK

(JK+Nmax

1+Nmax

)
. This shows that even for Nmax = 2 the size

of the hierarchy is massive, if the total number of modes (JK)
is large. To make things worse, for many relevant parameter
regimes a large Nmax is required. Our MPS/MPO formulation
will resolve this fundamental problem.

Effective Hamiltonian for HOPS. To obtain a convenient
form to construct MPS and MPO, we formally define states
{|n〉} with |n〉 = |n1, . . . , nK 〉 and introduce

|�(Z∗)〉t =
∑

n

ψn
t (Z∗) |n〉 (8)

with the auxiliary vectors ψn
t of HOPS as expansion coeffi-

cients. Defining the following orthonormal relation 〈n|n′〉 =
δnn′ , these coefficients can be obtained from ψn

t = 〈n|�〉t .
The HOPS system of equations (7) is then expressed as

∂t |�(Z∗)〉t = −iĤeff(Z
∗) |�(Z∗)〉t , (9)

with the effective stochastic Hamiltonian

Ĥeff = ĤS + iL̂Z∗
t − i

K∑
k=1

νk b̂†
kb̂k

− iL̂†
K∑

k=1

√
|dk| b̂k + iL̂

K∑
k=1

dk√|dk|
b̂†

k, (10)

where creation (b̂†
k) and annihilation (b̂k) operators have been

defined by

b̂†
k |n〉 =

√
nk + 1 |n + ek〉 ,

b̂k |n〉 = √
nk |n − ek〉 . (11)

Now the labels {nk} of the hierarchy play the role of occupa-
tion numbers. Thus we refer to the states |n〉 as pseudo-Fock
states. It is worth mentioning that the hierarchy labels {nk} no
longer appear in Ĥeff and that the third term on the right-hand
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side looks like a collection of harmonic oscillators, however,
with complex frequencies {νk}.

Before we introduce the MPS representation, let us men-
tion that for numerical calculations, in particular for strong
system-bath coupling, a nonlinear, normalizable version of
Eqs. (7) and (10) is required to achieve convergence with
respect to the number of trajectories [14]. This nonlinear equa-
tion is obtained through the following replacements: L̂† →
L̂† − 〈L̂†〉t and Z∗

t → Z∗
t + ∫ t

0 ds α∗(t − s)〈L̂†〉s. Expectation
values 〈·〉t are calculated using the normalized state.

HOPS in MPS/MPO representation (HOMPS). The sum-
of-products form of Eq. (10) is convenient for an implemen-
tation in terms of MPS and MPO. We represent the wave
function in Eq. (8) as an MPS by expanding |�〉t on a product
of system states (|�〉) and pseudo-Fock states, that is, |�〉 ⊗ |n〉,

|�〉t =
∑
�,n

ψ�,n
t |�, n1, . . . , nK 〉

=
∑
�,n,a

A�
1,a0

An1
a0a1

· · · AnK
aK−1,1

|�, n1, . . . , nK 〉 . (12)

Each Ani
ai−1ai

is a rank-3 tensor with a “physical index” ni

and “virtual indices” ai−1 and ai. The ranges of the virtual
indices are denoted as bond dimensions Mi. Increasing the
bond dimensions can systematically improve the accuracy
of an MPS. For fixed bond dimensions, the computational
cost to evolve Eq. (9) is polynomial rather than exponential
with the number of effective modes K . The bond dimensions
can also be optimized adaptively in each time step during
propagation. We present calculations using both methods in
this Letter and the Supplemental Material [48]. Note that the
physical dimensions nk stem from the original indexing of the
HOPS. As long as the bond dimensions are not too large, one
can go to large Nmax without a drastic increase of the MPS
representation. One can even set the same maximal value nmax

for all modes. For the case of Eq. (2) this would correspond
to nJK

max coupled equations in HOPS. In conjunction with the
MPS, Eq. (10) is written as a MPO,

Ĥeff =
∑

�,�′,n,n′,w

W �,�′
1,w0

W
n1,n′

1
w0w1 · · ·W nK ,n′

K
wK−1,1

× |�, n1, . . . , nK 〉 〈n′
K , . . . , n′

1, �
′| , (13)

in which W ni,n′
i

wi−1wi is a matrix of local operators acting only on
the ith effective mode. This factorization is not unique. We
adopt the bipartite graph-based algorithm [50] to construct the
most compact MPO with the smallest size of virtual indices
wi, in order to reduce the computational cost of tensor con-
tractions. Introducing MPOs allows one to calculate Ĥeff |�〉t
using contractions of local matrices, which is then of polyno-
mial complexity. We stress that all tensors A and W depend on
the stochastic processes.

The generalization to more than one environment as given
in Eq. (2) is straightforward (see Sec. S3 of the Supplemental
Material [48]). We would like to emphasize that ordering
(and to some extent also the number) of the tensors in MPS
can be chosen according to the specific form of the system
Hamiltonian HS and the coupling operators HSB, j , as we will
exemplify below.

FIG. 2. Population dynamics of the spin-boson model with ε =
1.0, � = 1.0, η = 0.5 by averaging over 102 (yellow), 103 (orange),
and 104 (red) trajectories. (a) High-temperature β = 0.5 and small
γ = 0.25. HOMPS results are obtained using K = 1 and nmax = 39.
In the inset, the MPS/MPO arrangement is shown, which is used for
all SBM calculations. (b) Low-temperature, large damping case, with
γ = 5.0, and β = 50.0. HOMPS results with K = 13, and nmax = 9
for each mode. Inset: Evolution of maximum bond dimension av-
eraged over 103 trajectories. The HEOM results (black, dashed) are
taken from Ref. [51].

Numerical example 1: Spin-boson model (SBM). The SBM
is often used to test the applicability of a new method. Here,
ĤS = εσz + �σx and L̂ = σz, where σx = |1〉 〈2| + |2〉 〈1| and
σz = |1〉 〈1| − |2〉 〈2|. We consider a Debye spectral density
S(ω) = η

ωγ

ω2+γ 2 . In Ref. [51] calculations using the density-
matrix-based hierarchical equations of motion (HEOM)
method have been presented for ε = 1.0, � = 1.0, and η =
0.5, and a “high-temperature, low damping” case with γ =
0.25 and β = 0.5 [Fig. 2(a)] and a “low-temperature, large
damping” case with β = 50 and γ = 5.0 [Fig. 2(b)]. In Fig. 2
we show that HOMPS quickly converges to these refer-
ence calculations. For the high-temperature case [Fig. 2(a)],
1000 trajectories give very good agreement, and for the low-
temperature case [Fig. 2(b)], where fluctuations of the noise
are smaller, only 100 trajectories are needed. This demon-
strates the validity of our procedure. Let us now consider in
more detail the complexity of the equations to solve. In each
case we have chosen the number of modes K large enough
to guarantee convergence of the bath-correlation function.
For the high-temperature case only one mode is necessary
(K = 1), while for the low-temperature case we used K = 13.
For simplicity, we use for each mode k the same truncation
condition nk � nmax. Although for the high-temperature case
we need nmax ≈ 40 (see Sec. S6 of the Supplemental Material
[48]), the problem is still small, because of K = 1. The low-
temperature case with K = 13 is more challenging. While for
HOPS this would result in 913 equations and one would have
to use adequate truncation procedures [49], for HOMPS it
only means a small increase in computational effort. Relevant
for HOMPS is the size of the tensors in Eq. (12), which is
given by the product of nmax and the two bond dimensions.
Remarkably, as shown in the inset of Fig. 2(b), the actual
maximum bond dimension Mmax is almost always smaller than
3. This means that the largest tensor has a dimension around
3 · 3 · nmax = 81, for the used nmax = 9.

Numerical example 2: Exciton transport in a linear chain.
As a second example we consider the motion of (electronic)
excitations under the influence of damped vibrational modes.
Such a model describes, e.g., molecular aggregates or biolog-
ical light harvesting systems with coupling to vibrations of
the molecules [52,53]. Treating each molecule as an electronic
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FIG. 3. Application of HOMPS to a linear chain. (a) One-dimensional chain with intermolecular coupling strength Vj j′ = 1
| j− j′ |3 . (b) The

used MPS/MPO structure. (c), (d) Evolution of population and bond dimension for both average and single trajectories. The corresponding
spectral densities and bath-correlation functions are shown in the upper row of each panel. Parameters of HOMPS are (c) K = 1 and nmax = 40.
(d) K = 2, nmax = 20.

two-level system, the total Hamiltonian can be written as Ĥ =∑
j=1 Ĥj + ∑

j j′ V̂j j′ , where the Hamiltonian Ĥj of the jth site

is characterized by a system part ĤS, j = ε ja
†
j a j , system-bath

coupling operators L̂ j = a†
j a j , and a corresponding spectral

density S j (ω), which contains molecular vibrations and the
coupling to the local surroundings. The coupling between
sites is typically the long-range dipole-dipole interaction and
assumed not to couple directly to the environment. Further
details are given in Sec. S4 of the Supplemental Material
[48]. For this problem we use a MPO/MPS as shown in
Fig. 3(b), where each local system Hamiltonian HS, j is fol-
lowed by its modes from the decomposition of the respective
bath-correlation function. This allows us to also conveniently
treat the case of several electronic excitations, needed for
example to describe exciton-exciton annihilation experiments
[54]. In Fig. 3 we show electronic excitation transport along
a one-dimensional chain with the nearest-neighbor interaction
V̂j j′ = V δ j j′ . The case of a long-range dipole-dipole interac-
tion with V̂j j′ = 1/| j − j′|3 is presented in the Supplemental
Material [48]. In Fig. 3 we present results for two different
spectral densities and temperature regimes. In Fig. 3(c) we
use a Debye spectral density with the same parameters as

for the high-temperature case of the SBM [cf. Fig. 2(a)].
In Fig. 3(d) the spectral density consists of two broadened
peaks, a spectral density typical for weakly damped vibra-
tional modes of polyatomic molecules. Here, we consider zero
temperature. These spectral densities and the corresponding
bath-correlation functions are shown in the upper row for both
cases. Below, we show the time-dependent populations, for
the converged results and for single trajectories, and on the
bottom the time dependence of the bond dimensions. Ad-
ditional examples of single trajectories can be found in the
Supplemental Material [48]. We see that in both cases the
bond dimensions remain small and relatively well localized.
This is an additional benefit for handling such large systems.

Conclusions. The numerical results demonstrate that
HOMPS works well in simulating quantum dissipative dy-
namics for large systems in highly non-Markovian regimes.
This is achieved by a MPS/MPO representation of HOPS.
Compared to Ref. [55], which parallels our work, our focus
has been the treatment of several modes per site, which is
important, e.g., when treating temperature or vibrational
modes of molecules.

We have used here a representation of HOPS where the
hierarchy is constructed from a decomposition of a bath-
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correlation function that contains the temperature. Recently,
Hartmann and Strunz have derived a version of HOPS where
the temperature enters simply as a classical stochastic process,
and the hierarchy is constructed from the zero-temperature
bath-correlation function [56]. This approach can also be read-
ily used within the MPS/MPO of the present work.

An appealing feature of the present HOMPS is that the
reduction in size can be done by automatically adapting the
bond dimensions in each time step. In that sense HOMPS
shares similarities to other adaptive schemes for Marko-
vian and non-Markovian quantum state diffusion [57,58]. A
promising future direction is to meld HOMPS with such
schemes. We believe that HOMPS is a fruitful approach to
explore the dissipative dynamics in open quantum systems.
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