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Digital quantum simulation of electron-phonon systems requires truncating infinite phonon levels into N basis
states and then encoding them with qubit computational basis. Unary encoding and binary encoding are the
two most representative encoding schemes, which demand O(N) and O(log N) qubits as well as O(N) and
O(N log N) quantum gates, respectively. In this paper, we propose a variational basis state encoding algorithm
that reduces the scaling of the number of qubits and quantum gates to both O(1) for systems obeying the area
law of entanglement entropy. The cost for the scaling reduction is a constant amount of additional measurement.
The accuracy and efficiency of the approach are verified by both numerical simulation and realistic quantum
hardware experiments. In particular, we find using one or two qubits for each phonon mode is sufficient to
produce quantitatively correct results across weak and strong coupling regimes. Our approach paves the way
for practical quantum simulation of electron-phonon systems on both near-term hardware and error-corrected

quantum computers.
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I. INTRODUCTION

Electron-phonon couplings are pervasive in quantum ma-
terials, governing phenomena such as charge transport in
semiconductors [1], vibrational spectra [2], polaron forma-
tion [3], and superconductivity [4]. Classically, expensive
numerical methods such as density matrix renormalization
group (DMRG) and quantum Monte Carlo are required to
accurately simulate electron-phonon systems due to the inte-
rior many-body interaction [5—11]. Quantum computers hold
promise for the simulation of quantum systems with exponen-
tial speedup over classical computers [12]. In the wake of the
tremendous progress in the implementation of quantum com-
puters [13,14] and the dawning of the noisy intermediate-scale
quantum era [15], how to solve electron-phonon coupling
problems with quantum computers has attracted a lot of re-
search interest [16-21].

A prominent problem for the digital quantum simulation of
electron-phonon systems is how to encode the infinite phonon
states with finite quantum computational basis states. The first
step is usually truncating the infinite phonon states into N
basis states {|m)} and then the second step is encoding {|m)}
into quantum computational basis {|n)}. The phonon basis
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states are usually the N lowest harmonic oscillator eigen-
states or N uniformly distributed grid basis states. There are
two established strategies to perform the encoding {|m)} —
{In)} [22,23]. The first is unary encoding [24,25], in which
each |m) is encoded to |00...1,,...00), and the total num-
ber of qubits required scales as O(N). The second is binary
encoding, in which each |m) is encoded to [, [L5] mod 2)
represented by O(log N) qubits [16—18]. In terms of two-qubit
gates required to simulate quantum operators such as b"+b
and b'b, unary encoding scales as O(N) and binary encoding
scales as O(N log N) [23]. The features of unary encoding and
binary encoding are summarized in Table I. Compared to the
simulation of electrons, the simulation of phonons consumes
quantum resources in a much faster manner, which becomes
the bottleneck for efficient quantum simulation of electron-
phonon systems.

In this paper, we propose a basis encoding scheme called
variational encoding. Variational encoding maps linear combi-
nations of |m) that are most entangled to the simulated system
into the computational basis, i.e., ), Cun |m) — |n), where
C,un 1s determined by variational principle. The advantage of
our approach is that, by encoding only the most entangled
states and discarding the ones with little entanglement, the
size of {|n)} can be made irrelevant to the size of {|m)}. In
other words, the number of qubits required scales as O(1).
Consequently, the scaling for the number of gates is also O(1).
The premise of the scaling reduction is the area law of entan-
glement entropy. Variational encoding is best suited to work
in combination with variational quantum algorithms such as
the variational quantum eigensolver (VQE) [26,27] and vari-
ational quantum dynamics (VQD) [28,29]. In addition, the
variational encoding is also compatible with Trotterized time
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TABLE I. Comparison of traditional encoding schemes and the
proposed variational encoding in terms of encoding formula, the
number of qubits Ny required, and the number of quantum gates
Ngate requlred to simulate common phonon operators such as 5" + b
and b'b.

Scheme Formula Nqubit Ngaee
Unary [m) +—100...1,,...00) O(N) O(N)
Binary |m) — TT, [l57] mod2) O(logN) O(NlogN)
Variational > Con Im) > |n) o(l) o(l)

evolution and quantum phase estimation (QPE) [12,30,31].
Numerical simulation and experiments on realistic quantum
hardware based on the Holstein model and spin-boson model
shows that using one or two qubits for each phonon mode
is typically sufficient for highly accurate results, even in the
strong coupling regime.

II. VARIATIONAL BASIS STATE ENCODER

In this section, we present a more rigorous formulation of
the variational basis state encoder. To encode each phonon
mode /, encoded by N; qubits, we define the variational basis
state encoder B[I] as follows:

2N

Bl =" " Clldn In); (m] . ey

m n=l1
with orthonormal constraint

BB =T )
or, equivalently,

> ClmClI Ty = S - 3)

In this paper, we use |m) to represent phonon states and |n) to
represent qubit states. Equation (1) can be rewritten as

2N

Bll =Y "Iny Y Clll i(ml, )
n=1 m

and it is clear that B performs ), Gy |m) > |n), The orig-

inal Hamiltonian in |m) basis H can then be encoded to |n)
basis using the following expression:

A .=[]BmAT]Bum" . (5)
1 )

For both static and dynamic cases, encoder coefficients C
are determined by variational principle. In the remainder of
the section, we will derive the equation for C. We use atomic
units throughout the paper.

A. Time-independent equation

Suppose the quantum circuit is parameterized by |¢) =
[T, €% |o), and then the ground state Lagrangian with

multipliers Ay, is

(1 |¢) +

Z )"lnn <Z C l]mn

- nn) . (6)
Inn'

Taking the derivative with respect to 6, immediately leads to
traditional VQE with encoded Hamiltonian H:

3 (p|H o)
96

Taking the derivative with respect to C[/],,, and setting it to 0
yields

—0. )

(@ln) (A1) + Dl ClUTy =0, (8)

where A "[1] is the the half-encoded Hamiltonian:
Al = HB 1H ]‘[ Blk]" . 9)
k£l
Multiply Eq. (8) with C[!],,,» and use the C[I] orthonormal
condition Eq. (3) to get A:

hime = — Y Clllr (@ln); (mIA'UT10) . (10)

Define projector

P = BIT'BI =) > |m), ClIT;, Cllpn 1(m| . (11)

mm’ n

Substituting A [Eq. (10)] into Eq. (8) then yields
(@ln), ((mIH'1116) — (Bln), (mIPHI11$) =0 . (12)

Rearranging and rewriting in matrix form, we get the equa-
tion for C[!]:

(1= PUD (@IA119) = 0. 13)

Here C[!] is contained in P[/] and H'[]].

To summarize, circuit parameters 6; are solved by VQE
according to Eq. (7), and variational parameters C[/] are
determined by solving Eq. (13) classically. Because Eq. (7)
contains C[/] and Eq. (13) contains 6, 6; and C[!] are solved
iteratively until convergence. In the following, this iteration is
termed macroiteration to avoid confusion with VQE iteration.

B. Quantum circuit measurement

In this section, we discuss the quantum circuit measure-
ment required to solve C[/] from Eq. (13). The key quantity to
be computed is matrix G[!],,,, defined as

Glllm = (@In), ((m|H'[1] 1) . (14)

Suppose the Hamiltonian can be written as a sum of direct
products

M
A=Y he. h=][]hkl, (15)
X k

\yhere M is the total number of terms in the Hamiltonian and
hlk], acts on the kth degree of freedom. Similar to the encoded
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Hamiltonian, the encoded local operator is denoted as fl[k]x:
hIKY := BIKIAIALBIATT . (16)

For electron degrees of freedom, a dummy encoder B[k] = I
is used for notational simplicity. G[/],,, can then be written as
M

Glllun = Y (®ln), (mlALILBUY [ [ AlK1 1) . (A7)
x k#l
Next, represent fz[l ], in operator form:
hil)y =" Al Im'); 1 (m] . (18)

G[!],, then becomes

M
= Z Z ]’l[l]xmm’c[l]m’n’-][l]xnn’ ’

Gl
I W = (Bln)y | | [ ALY @) - (19)
k£l
Thus, to evaluate GI[I],, it is sufficient to measure
JU)sn- |n); ('], in general, is not Hermitian, but the

real and imaginary parts can be measured separately with
(1) 10/ + 1), y{nl) and ('), 4 (n] = Inby (')

Assuming the number of measurement shots for each Pauli
string is Nghots, the number of measurements to determine
J[1]is thus O(2Y M Ny ), which is polynomial to the system
size and does not increase with N. After J[/] is measured,
evaluating G[J] and the left-hand side of Eq. (13) scales as
02V N2M) by matrix multiplication on a classical computer.
Considering the measurement of a parameterized quantum
circuit takes a much longer time than a float-point number
operation on classical computers, the classical workload is
negligible compared to the additional measurements for rea-
sonable values of Ny and N, such as Ng,os = 4096 and
N = 64. Thus the reduction in quantum resources is not
achieved by increasing classical resources [32]. If the number
of phonon modes is assumed to be linear with M and each
C[I] is updated independently, then the total number of mea-
surements for all C[I] is O(2N M?*Ng). The measurement
overhead increases exponentially with ;. Due to arguments
presented later, &V, is usually small and does not increase with
system size. From numerical experiments, we find N; < 2 is
sufficient to produce excellent results.

C. Time-dependent equation

For time-dependent problems, it is convenient to define

) =[BT 16) (20)
!

and use Ok denote both 6; and C[!/]. The Lagrangian with
multipliers A;,, and y;,,, is then

L=y aW)oK—Hw/)

K
+ Alnmtz CUIT3, Cll
Inn’'
+ D Vinw \sZ CIL Cll 1)

Inn'

The constraints ensure that C[/],,, remains orthonormal dur-
ing time evolution. Taking the derivative with respect to Ok
yields

AN RO o A
i ) — i ALY
+;MW‘RZC maizin
+Zymn~sZC mnBC[l]mn , 22)
z,m

The subsequent derivation involves a more intricate process
similar to that of Eq. (13). Elaborate details are documented in
Appendix A. Here, we provide an outline of the crucial steps.
First, consider the case where ®x = 0, and we find that the
equation of motion for 6 is the same as vanilla VQD with

encoded Hamiltonian H:

d(plalg) .  _9(pl 2
Zma—eka—ejej_ WH|¢> (23)

Next, consider the case where Ok = C[I], which ultimately
leads to the following equation for C[/]:

iplCIT" = (1 — PUD) ($IA'111) . (24)

where p[l],y = Tr{{¢|n); ;(n'|¢)} is the reduced density ma-
trix for the N; qubits of |¢). Equation (13) represents a
C[l] = 0 stationary point during real and imaginary time evo-
lution. The measurement cost is the same as the ground state
algorithm.

While we have relied on parameterized quantum circuits
for our derivation thus far, it is worth noting that incorporating
the variational encoder into Trotterized time evolution and
QPE is a straightforward extension. The VQD step described
by Eq. (23) can be naturally replaced by a Suzuki-Trotter
time evolution step ¢~#* ~ [T¥ ¢=* on a digital quantum
simulator, so that Hamiltonian simulation is performed via
Trotterized time evolution instead of VQD. To update C[/]
based on Eq. (24), measurements on the circuit should be per-
formed for every or every several Trotter steps. The variation-
ally encoded ground state can then be prepared by adiabatic

state preparation, whose energy is accessible by QPE using A.

D. Variational basis state encoder as an ansatz

It is instructive to observe that if the variational ba-
sis encoder is viewed as a wave function ansatz |y), then
the algorithm proposed in this paper can be viewed as a
generalization for the local basis optimization method for
DMRG [33,34] or a special case of the recently proposed
quantum-classical hybrid tensor network [35]. Thus, B[l cap-
tures the 2V phonon states that are most entangled with the
rest of the system. For local Hamiltonians obeying the area
law, the entanglement entropy between one phonon mode and
the rest of the system S is a constant [36]. Consequently,
|(|W)|?, the fidelity between the approximated encoded state
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FIG. 1. Numerical simulation results for the ground state of the Holstein model. (a) Ground state energy by binary encoding and variational
encoding with different coupling strength g; (b) Convergence of ground state energy with respect to the macroiteration for variational encoding.
(c) Ground state energy error for the variational encoding method at different numbers of phonon basis states N. (d) The singular values for
the Schmidt decomposition between the last phonon mode and the rest of the system.

and the target state has a lower bound of 2%, which lays the
theoretical foundation for the effectiveness of the variational
encoding approach to ground-state and low-lying excited state
problems.

III. SIMULATIONS

A. Numerical simulation on a noiseless simulator

The variational basis state encoder is first tested for VQE
simulation of the one-dimensional Holstein model [37,38],
H=— ZV&j&j + Zw@j@i + Zgw&j&i(ﬁj +by),
(i) i i
(25)

where @ and b are annihilation operators for electron and
phonon, respectively, V is the hopping coefficient, (i, j)
denotes nearest-neighbor pairs with periodic boundary con-
ditions, w is the vibration frequency, and g is dimensionless
coupling constant. In the following, we assume V = w =1
and adjust g for different coupling strengths. We consider a
three-site system corresponding to 3(N; + 1) qubits. We use
binary encoding to represent traditional encoding approaches.
Unary encoding is expected to produce similar results with bi-
nary encoding only with different quantum resource budgets.
We devise the following ansatz:

L

|p) = 1_[ 1_[ e(ﬁjk(&j@k*ﬁzﬁ/) Hef)nﬁ}ﬁf@}@ﬂ ldo) , (26)

[ (j.k) J

where L is the number of layers and L = 3 is adopted. More
details of the simulation are included in Appendix B.

We first compare the accuracy of the variational encoding
and the binary encoding with N; = 1. It is clear from Fig. 1(a)
that variational encoding is significantly more accurate than
binary encoding, especially at the strong coupling regime.
Within the setup, binary encoding uses only two phonon ba-
sis states to describe each phonon mode, yet the variational
encoding is allowed to use up to 32 phonon basis states
before combining them into the most entangled states. We
note that the quantum circuit used for variational encoding
and binary encoding is essentially the same. The number of
macroiterations to determine C[/] is found to be rather small,
as shown in Fig. 1(b). Fully converged results are obtained
within five iterations. In Fig. 1(c), we show more details of
the error for the variational approach. The simulation error
typically decreases exponentially with respect to the number
of phonon levels N included in C[/]. It is worth noting that
quantum computational resources, including the number of
qubits, the number of gates in the circuit, and the number
of measurements remain constant when N is increased from
2 to 32. Furthermore, by using two qubits to encode each
mode, it is possible to further reduce the error at the N — 0o
limit. When g = 3.0, the error is not sensitive to N;, which
implies that the error is dominated by other sources such as
limitations of the ansatz, instead of the small N;. Figure 1(d)
shows the singular values for the Schmidt decomposition be-
tween the last phonon mode and the rest of the system by
DMRG. The exponential decay ensures the fast convergence
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FIG. 2. Numerical simulation results for the spin-relaxation dynamics of the spin-boson model. (a) Comparison between binary encoding
with different numbers of phonon basis states and variational encoding for a one-mode spin-boson model. (b) Variational encoding with
different numbers of encoding qubits &, for a two-mode spin-boson model. (¢) Comparison between binary encoding and variational encoding
for an eight-mode spin-boson model with sub-Ohmic spectral density. (d) Trotterized time evolution with variational encoding based on a

one-mode spin-boson model.

of N;. The von Neumann entropy S for the three systems is
found to be 0.01, 0.25, and 0.65, respectively. We also note
the g = 1.5 case has the largest third singular value, which
explains why setting N; = 2 significantly reduces the g = 1.5
error in Fig. 1(c).

We now turn to the spin-relaxation dynamics of the spin-
boson model [39], described by the Hamiltonian

H = %OA'Z + Aé‘x + Zgja)jéz(l;; + BJ) + ijl;y;/ s
J

27
where € is the eigenfrequency and A is the tunneling rate.
The coupling term has a similar form with Eq. (25) and
is more commonly written as »_ j€j6z%;. For systems in
the condensed phase, the coupling is usually cParacterized
by the spectral density function J(w) = 5 > ; :—’jS (w — wy).
In the following, we assume € = 0 and A = 1. We first use
VQD for the simulation and discuss Trotterized time evolution
at last. The variational Hamiltonian ansatz [40] with three
layers is used if not otherwise specified.

The performance of variational encoding and binary en-
coding is first compared based on a one-mode spin-boson
model at the strong coupling (w =1 and g = 3) regime,
shown in Fig. 2(a). Variational encoding with N; =1 gen-
erates much more accurate dynamics than binary encoding
with fewer qubits and quantum gates. The simulation of bi-
nary encoding with N; > 4 is prohibited by the deep circuit

depth in the ansatz. The variational encoding scheme is excep-
tionally efficient for this one-mode model because Schmidt
decomposition guarantees that two variational bases for the
phonon mode are sufficient to exactly represent the system.
In Fig. 2(b), a two-mode model with w; %, land g; = %, 1
is used. Variational encoding with N; = 1 is accurate at t < 2
but as the entanglement builds up the dynamics deviate from
the exact solution. Increasing NV, to two effectively eliminates
the error. Next, we move on to a more challenging model with
eight modes, in which w and g are determined by discretizing
a sub-Ohmic spectral density J(w) = %awswi’se""/wﬂ fol-
lowing the prescription in the literature [41]. The parameters
are s = }P w. =4 and o = 10. As illustrated in Fig. 2(c),
variational encoding with N; = 1 captures the localization
behavior yet binary encoding with Ny = 1 completely fails.
The number of layers in the variational Hamiltonian ansatz
is 8 and 32 for variational and binary encoding, respectively.
Figure 2(d) demonstrates the possibility to incorporate the
variational basis state encoder into Trotterized time evolution
with w = g = 1 and N; = 1. The measurement and the evolu-
tion of C[/] are performed at each Trotter step.

B. Verification on a superconducting quantum processor

In this section, we verify the accuracy and efficiency of the
variational encoder approach on a superconducting quantum
processor [42,43]. We consider the ground state problem of
a two-site Holstein model described by Eq. (25) with g=3
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FIG. 3. Quantum hardware experiments for the ground state energy of the Holstein model with variational basis state encoder. (a) Three
qubits out of nine qubits of a superconducting quantum processor and a one-parameter circuit are used for the simulation. (b) Ground state
energy by binary encoding and variational encoding. (c) Convergence of ground state energy with respect to the macro-iteration for variational

encoding.

and N, = 1. The two electronic sites are represented by one
qubit and the total number of qubits for the system is thus
three. The quantum circuit for the simulation is depicted in
Fig. 3(a). The electronic degree of freedom is mapped to the
second qubit, and the two phonon modes are mapped to the
first and the third qubits respectively. There is one parameter
to be determined by VQE in the circuit and the same ansatz is
used for both binary encoding and variational encoding. More
simulation details can be found in the Supplemental Material.
In Fig. 3(b), we show the ground state energy by variational
encoding from weak to strong coupling, in analog to Fig. 1(a).
The simulator result is based on the parameterized quantum
circuit described in Fig. 3(a) without considering gate noise
and measurement uncertainty. The results in Fig. 3(b) are
consistent with those in Fig. 1(a). The residual error is domi-
nated by the intrinsic gate noise in the quantum computer. In
Fig. 3(c), we show the convergence with respect to the macroi-
teration for variational encoding. The algorithm is resilient to
the presence of quantum noise and measurement uncertainty.
The convergent energy is reached within five iterations.

IV. CONCLUSION

We proposed a variational basis state encoder to encode
phonon basis states into quantum computational states for
efficient quantum simulation of electron-phonon systems. The
proposed variational encoding approach requires only O(1)
qubits and O(1) quantum gates for systems obeying the area
law of entanglement entropy, which is significantly better than

traditional encoding schemes and enables quantum simulation
of electron-phonon systems with smaller quantum processors
and shallower circuits. The additional measurement required
to implement the approach is found to be also O(1) with
respect to the number of phonon basis states and it scales
quadratically with the number of Pauli strings in the Hamil-
tonian. The accuracy of the approach is ensured by the finite
entanglement entropy between one phonon mode and the
rest of the system in common electron-phonon systems. The
variational basis state encoder most naturally works with vari-
ational quantum algorithms and is compatible with Trotterized
time evolution, adiabatic state preparation, and QPE. Numer-
ical simulation and quantum hardware experiments based on
VQE of the Holstein model and dynamics of the spin-boson
model indicate that variational encoding is more accurate and
resource-efficient than traditional encoding methods. In par-
ticular, using one or two qubits to represent each phonon mode
is sufficient for accurate simulation even at the strong coupling
regime where N = 32 phonon basis states are involved. The
approach could also be extended to other quantum simulation
problems involving an infinite or large local Hilbert space.
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APPENDIX A: DERIVATION OF TIME-DEPENDENT EQUATION

In this Appendix, we derive the time-dependent equation for C[/]. For time-dependent problems, C[/], in general, is complex,

Cll] = D[] —iE[!], (AD)
where both D[/] and E[!] are real. The minus sign is for convenience, expressing Bf |¢). From the definition, we have
0 0
W) o) a2

OE[lmn D[]
The starting point is Eq. (22). We first consider the case of ®x = 6, and then

oL o(ylaly) . oyl oly) . (Y| A A0 |Y)
a_ék_z 90, 96, 01+, 20, 90, > T8, Ry)—ity|d 90,
a (Y| aly) (Y| A
_ZZ 36, 36, O — 23 a—le) (A3)

which means at the 2—9% = 0 minimum, we have

O(ylaly) o 0yl .
Zma—ek 70, Q=3 % HIv) . (Ad)

Substitute ®; with 6y, D[!],,,, and E[l]m”:
AW oIY) Iyl aly) 3 [y)
N 0 Y DIl U -
Xj: 6, 96, Z aek ae o ; 96, D[, Z ae 8E[l] £l (AS)

Using Eq. (A2), the last two terms become

Ayl dly) G Al) o g W AN
%m 96k aD[l]mnDU]’"”;ﬁ 90 OE(m | _%m 90 0Dl | (RO

which is zero because

d(yl aly) . ERCIIN

%; 360 ID[ ] (o %’; [111m); ;(nICUT;,, |6) (A7)

where the constraint }_, C[1],,,C[I1%,, = 0 is used. Thus, the simplified equation of motion reads

CRVAK |1/’ (Yl 4
" = A A8
Z 89k ] N 89}( W’) ( )
or, equivalently,
9 (@), 3 (B »

Xj: 06, 96, ' 96 2 (A9)

In short, the equation of motion for 6y is the same as vanilla VQD with encoded Hamiltonian A.
Next we consider the case of ®¢ = D[I] and ®g = E[/]. After some complex algebra, we have

P EAARIIGr ,+z-mecu 3 Ut = Ay (A10)
J

D[ 99, ~ 3D

n

Similar to the case of Ok = 6, substituting ®; with 6y, D[!],,, and E[l],,:

Ayl aly) . Ayl aly) . Ayl afY) o
XJ: aDIl,, 960, Xk: oD 90 T k; SD Ul DKl © i

_ Iyl 3y, Il Al
B ; 0Dy 06k O+ ; D[, 0D Clly - (A11)

Here the orthonormal condition is again used. Substitute the equation back into Eq. (A10):

AW A, o AWl A . L . oWl
"2 5Dl 90, 2 Tl DTy Vo 3 2 = e Cllk = G A (A1)
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Following the same strategy with the derivation of the time-independent equation, multiply Eq. (A12) with C[/],,,,,

. alg), 1. (Yl
' 0 = wn — Vinn) = Cli mn ———H s Al3
z;<¢|n>,,<n| 26, Ok + 5 = Vi) Z U 50— H V) (A13)
where Y C[I1% C[llyy = 8ynand )", C (115, Cll]m, = 0 are used. Then, multiply again with C[I],,,:
. oyl aly), 1 . * s 0 (Wl s
O + = Mnn — Viwen)CUL = Pl H . Al4
szj DL . %t 3 ;o n = Yin)CUL,y =PI = 1) (A14)
Using this equation to eliminate A and y in Eq. (A12), we get the equation of motion for C[/],
, Ayl aly) . s 0Vl s
—C[Y,, = =Pl H , AlS
"2 DMl 3DITY P = = P g A1) (A1)
which can be simplified to
iplICUT" = (1= PULY) (@IH111I$) - (A16)

The measurement required for time evolution is in the same order as the static VQE algorithm.
In the end, we note that imaginary time evolution might be another approach to finding the ground state, in addition to the
iterative method described in the main text. Imaginary time evolution might also be a feasible approach to determine C[/] as an

alternative to solving Eq. (13).

APPENDIX B: NUMERICAL SIMULATION DETAILS

All numerical quantum circuit simulations are performed
using the TENSORCIRCUIT [44] package and the TEN-
CIRCHEM [45] package without considering noise. Classical
DMRG simulation is performed using the RENORMALIZER
package [46]. We use harmonic oscillator eigenstates for
phonon basis states. Using positional states might affect the
performance of traditional encodings because of the trunca-
tion, however, we expect variational encoding to be insensitive
to the choice of phonon basis states at the N — oo limit. We
use Gray code for binary encoding as an improvement to the
standard approach [22]. For both ground state simulation and
dynamics simulation, C[/] is initialized as C[/],;, = 8-

For the VQE simulation of the Holstein model, the circuit
parameters 6 are optimized by the L-BFGS-G method imple-
mented in the SCIPY package [47]. The parameter gradient
is calculated by autodifferentiation. The initial values for the
parameters are set to zero at the first round of the macroitera-
tion. In subsequent macroiterations, the previously optimized
parameters are used as the initial value for faster convergence.
Equation (13) is solved by the DF-SANE method imple-
mented in SCIPY [47]. Since this is a nonlinear equation, we
provide three initial guesses and adopt the one with the low-
est energy. The solved C[I/] sometimes does not satisfy the
orthonormal condition due to numerical imprecision and the
orthonormal condition is enforced by QR decomposition in
each macroiteration.

For the VQD simulation of the spin-boson model, the
variational Hamiltonian ansatz used is more complex than
the VQE simulation. Because C[/] is complex, B[11A[N. B[N
spans the whole Hermitian matrix space. Thus, for l;[l]x
the whole Pauli matrix set {X,Y,Z, I}® is added to the
ansatz. To obtain the quantities required to calculate 6y, the
Jacobian of the wave function ¢(§) is first calculated by
autodifferentiation, and then the right-hand side and left-hand
side of Eq. (5) in the main text are calculated by matrix multi-
plication. How to measure the quantities in realistic quantum

(

circuits is well described in the literature [19]. To calculate
C[i], it is necessary to take the inverse of p[l/], which is
sometimes ill-conditioned. We add 1 x 107> to the diagonal
elements of p[l] for regularization. The time evolution of 6
and C[!] is carried out using the RK45 method implemented in
ScIPy [47]. We observe that the gradient of 6 is usually much
larger than C[I]. Thus, it is possible to evolve the two sets
of parameters separately, which deserves further investigation.
For Trotterized time evolution, N = 16 and a time step of 0.01
are used.

APPENDIX C: EXPERIMENTS ON A
SUPERCONDUCTING QUANTUM PROCESSOR

1. Device parameters

The superconducting quantum processor, as shown
in Fig. 3(a) in the main text, is composed of nine
computational transmon qubits with each pair of neighboring
qubits mediated via a tunable coupler, forming a cross-shaped
architecture [42,43]. Each computational qubit has an in-
dependent readout cavity for state measurement and XY/Z
control lines for state operation. High-fidelity simultaneous
single-shot readout for all qubits is achieved with the help
of the multistage amplification with the Josephson parametric
amplifier functioning as the first stage of the amplification.
The fundamental device parameters including qubit param-
eters and gate parameters are outlined in Tables II and III,
where the parasitic ZZ interaction between qubits is sup-
pressed by the coupler.

2. Experimental details

We use three qubits out of the nine-qubit computer for the
two-site Holstein model:

H =—V(alay+d,a))+oblb) + wbib, + gwala; (b} + by)
+ ga)a;az(b; + b)) . (C1)
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TABLE II. Single qubit gate parameters. w, is the resonant frequency of the readout cavity for each qubit. wjma (j =1~ 9) are the
maximum resonant frequencies when qubits are biased at the sweet spot. w;iae (j = 1 ~ 9) are the idle frequencies for implementing the
single-qubit operations. «; (j = 1 ~ 9) are the qubits’ anharmonicities. 7;, T jqe, and T jqe are the corresponding energy relaxation time,
Ramsey dephasing time, and echoed dephasing time for the qubits measured at the idle frequency. The readout fidelities are typically
characterized by detecting each qubit in |g) (|e)) when it is prepared in |g) (|e)), labeled by F;, ; and F; ;. To mitigate the error coming from
the readout infidelity, the outcomes are reconstructed with the calibration matrix through the Bayes’ rule. Single-qubit errors ey, are measured
with randomized benchmarking (RB).

Qo 0 03 03 Q4 0Os Os 05 Os
o, (GHz) 6.874 6.825 6.931 6.901 6.845 6.786 6.991 6.961 6.806
®jmax (GHz) 4.003 4.215 4.479 4.689 4.470 4.479 4.657 4.512 4.362
jiqa. (GHz) 3.988 4.187 4.464 4.668 4.404 4.359 4.641 4.498 4.223
a;/2m (MHz) —260 —258 —255 —-250 —254 —258 —253 —257 —264
T; (us) 353 31.6 29.5 27.7 33.9 343 333 22.1 31.8
T3 idie (US) 11.0 10.2 32.6 382 9.1 5.6 43.1 24.1 43
Tk igie (US) 48.2 38.4 47.8 442 31.6 21.8 56.8 329 18.6
F.j (%) 96.9 97.4 98.6 98.9 98.7 98.4 96.3 97.2 94.1
Fj (%) 93.7 94.3 92.5 94.3 94.5 94.6 92.7 92.4 90.9
esq (%) 0.07 0.32 0.06 0.07 0.08 0.05 0.06 0.15 0.08

The electronic degree of freedom is mapped to the second qubit. Thus, a'{'al is mapped to %(1 + Z;) and a;ag is mapped to

%(1 — Z1). The phonon modes are mapped to the first and the third qubit. With binary encoding and N; = 1, the Hamiltonian in
the Pauli string form reads

H=-VX| +10(l = Z) + 1o(l — Z2) + 1go(1 + Z)Xo + 380(1 — Z)X, . (C2)

For variational encoding, we assume C[/] = C. That is, the two modes share the same variational encoder. This is a reasonable
assumption for translational invariant systems. 6’6 = ), m |m) (m| is then encoded to

BO'DB =Y " Fuln) (0| . Fur =Y _ mCyuConr - (C3)
It is then possible to express the encoded operator as
Bb'b)B" = ¢l + c1xX + c1.Z , (C4)
where
cii= o+ F1)/2, cx=Fn=Fo, ciz=UEFpo—Fu)/2. (C5)
Similarly, bt + bis encoded as
B+ b)B" = eyl + o X + 2.2 (C6)

and we omit the explicit expression for ¢, for brevity. The encoded Hamiltonian is then
H = —VX| + o(ciily + cixXo + ¢1:.20) + w(ciil + c1.Xa + ¢1:.22)
+ 380(1 + Zy)(cailo + e2:Xo + €2:Z0) + 380(1 = Zi)(cailr + 20X + €2:20). (€7

TABLE III. Two-qubit gate parameters. o, iqe are the idle frequencies for each coupler where the ZZ interaction between neighboring
computational qubits are maximally suppressed. &7 is the residual ZZ interaction between each qubit pair. Two-qubit gates are implemented
with the controlled-Z (CZ) and the corresponding gate errors e ¢z are characterized with RB.

Qo — O Qo — O Qo — 03 Qo — 04 01— 0s 0> — 0Os 03— 0 04— 0Os
we.iale (GHz) 5.020 5.445 5.570 5.335 5.325 5.595 5.695 5.355
|&77] (kHz) 18.0 10.0 5.0 8.0 2.0 3.0 5.0 2.0
ew.cz (%) 1.57 222 1.99 247 0.91 1.04 12 0.96
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FIG. 4. VQE energy landscape for the two-site Holstein model
with binary encoding. For the data from quantum hardware, both raw
data and data with readout error mitigation are presented. The error
bar indicates the measurement uncertainty.

J

Rz(—0)

We use the following ansatz for the parameterized quantum
circuit:

2
0idta;(bi—b;) 1
= 794182, 721) — (1000) + 1100)) . C8

Because C[1] = C[2], the parameter space can be further sim-
plified by setting 6; = 6,. With binary encoding, the ansatz
transforms to

|¢) — €i0Y2€7iOZIYzeiGYOEiGZ]YOH] |O> . (C9)

The ansatz is compiled into the following quantum circuit
with four CNOT gates:

Rz(—0)

i {Ra®)

: 7]
@ —H]

qo : — Rz(%ﬂ)
—H]

gz : Rz(%ﬁ)

Each energy term is measured by 8192 shots, and the un-
certainty is obtained by repeating the measurement five times
and taking the standard deviation. For the update of C[/],
4096 shots are performed for each term. Local readout error
mitigation is applied for all results presented unless otherwise
stated.

In Fig. 4, we plot the energy landscape E(6)/V in VQE
with binary encoding. Both raw data and data with local

o R (0) o { o (0) | B2 (5) |—

(

readout error mitigation are presented for the energy expec-
tation from quantum hardware. The mitigated landscape is in
decent agreement with the perfect simulator. A minimum at
around 6 = 0.6 is clearly visible. We note that the perfect
simulator is also based on the N; = 1 ansatz and N is far
smaller than what is physically demanded. Thus, the mini-
mum presented by the perfect simulator cannot be recognized
as the ground truth.
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