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Artificial intelligence and automation to power
the future of chemistry

In our traditional impression of chemical laboratories, researchers wear white coats and safety goggles
to conduct experiments. However, many recent developments in the field make use of autonomous syn-
thesis robots with integrated artificial intelligence (AI)-driven machine-learning units. These benchtop
devices might outperform human chemists in terms of speed and accuracy, which could accelerate the
discovery of molecules and materials for various applications. In this Voices piece, we ask a panel of ex-
perts from institutes in China: How are AI and automation shaping the future of chemistry?
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Unlocking chemistry’s future: Artificial intelligence-driven instrumentation

revolutionizes discovery

Artificial intelligence (AI) is set to revolutionize the field of chemistry, offering unprec-

edented opportunities for innovation and efficiency. The importance of instrumenta-

tion and hardware in AI-driven chemistry is profound, because they serve as the crit-

ical link between theoretical models and real-world applications. Advanced

instrumentation, such as high-throughput (HT) screening devices, spectrometers,

and chromatography systems, enables the collection of vast datasets that are essen-

tial for training and validating AI algorithms. Moreover, the integration of robotics

and automation hardware in chemical laboratories allows for the execution of com-

plex experiments with precision and speed, further enhancing the capabilities of AI

in predicting chemical reactions, designing novel materials, and optimizing synthesis

pathways. Consequently, the synergy between state-of-the-art instrumentation and

AI is driving revolutionary advancements in chemistry, leading to faster discovery cy-

cles, reduced costs, and a deeper understanding of chemical phenomena.

In the pursuit of advancing AI-powered chemistry, my research has focused on the

design and optimization of cutting-edge scientific instruments and hardware. These

instruments play a critical role in enabling the seamless integration of AI algorithms

into chemical research workflows, facilitating rapid experimentation and big data

collection/analysis. For instance, our work has led to the development of AI-driven

robotic synthesis platforms and HT screening systems. These platforms automate

chemical synthesis processes and enable the screening of vast chemical libraries

with unprecedented speed and efficiency. By coupling AI algorithms with state-of-

the-art instrumentation, we can accelerate the discovery of novel compounds and

materials with tailored properties for various applications, ranging from drug discov-

ery to materials science.

Moreover, AI-powered instrumentation enhances the accuracy and reliability of

chemical analysis. By leveraging AI algorithms to analyze complex spectroscopic

data generated by instruments such asmass spectrometers andNMR spectrometers,

we can extract valuable insights intomolecular structures and chemical reactions. This

not only accelerates the pace of scientific discovery but also enables researchers to

gain a deeper understanding of chemical systems and phenomena. Furthermore,

AI-driven data analysis tools facilitate the interpretation of experimental results and

guide future research directions. By automating the analysis of large datasets and

identifying correlations and patterns, AI algorithms enable researchers to make

informed decisions and optimize experimental parameters more effectively.

As we look toward the future, the synergy between AI and advanced scientific

instrumentation will continue to drive innovation in chemistry. By further advancing
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the development of AI-powered instruments and hardware, we can unlock new fron-

tiers in chemical research and address some of the most pressing challenges facing

society, such as drug discovery, renewable energy, and environmental sustainability.

In conclusion, the integration of AI with advanced scientific instrumentation and

hardware is poised to power the future of chemistry. By harnessing the collective po-

wer of AI and cutting-edge instrumentation, we can accelerate scientific discovery,

drive innovation, and pave the way for a cleaner, healthier, and more sustainable

world.
Sanzhong Luo

Center of Basic Molecular Sciences (CBMS),

Department of Chemistry, Tsinghua University
Advancements and challenges in AI for synthetic chemistry

AI is rapidly advancing in the field of synthetic chemistry, with applications in auto-

matic data extraction, property and reaction prediction, retrosynthetic analysis,

and autonomous synthesis. The integration of AI into synthetic chemistry has the po-

tential to revolutionize the way research is conducted in the coming decades. One

promising aspect of AI in synthetic chemistry is the concept of ‘‘synthetic copilot.’’

These intelligent copilots can collect and summarize the latest publications tailored

to researchers’ interests. Furthermore, they can provide researchers with sugges-

tions for new research directions based on the most recent findings. They can also

assist chemists in exploring new ideas, such as designing novel molecules and syn-

thetic pathways. In the laboratory, the embodied assistants can perform experiments

while online analysis instruments automatically detect and analyze the results. Un-

doubtedly, all the processes will be meticulously supervised and guided by the

chemist’s profound expertise, creative ideation, imaginative thinking, and chemical

intuition.

However, despite these advancements, several challenges must be addressed to

realize the full potential of AI in synthetic chemistry. One primary challenge is the

availability of high-quality synthetic databases for training AI models. Although

data-extraction algorithms exist, they have not yet achieved the level of complexity

required for parsing intricate chemical semantics. Leveraging large languagemodels

(LLMs) to collect chemical information and transfer it into a structured database is a

highly valuable goal. Additionally, developing multi-modal models capable of ex-

tracting illustrations and molecular structures is essential for building a diverse and

informative database. High-throughput experimentation (HTE) also offers valuable

data for model training.

Chemical feature engineering is another crucial aspect of AI technology in syn-

thetic chemistry. It involves mapping molecules and their correlations to abstract

mathematical structures known as chemical representations. However, achieving a

loss-free mapping is challenging. Researchers focus on specific properties and

computable parameters of molecules to develop descriptors such as molecule fin-

gerprints, chemical languages (e.g., SMILES and InChI), molecule graphs, and point

clouds. Although significant progress has been made, challenges remain in devel-

oping descriptors for chiral molecules and accurately representing complex chemi-

cal reactions and their intricate correlations among reactants, catalysts, solvents, and

reaction conditions. Collaboration between computer scientists and chemists is

essential for designing new chemical representations and reaction networks that

address these challenges.

The synergy among AI models, reaction data, and experimental practices is trans-

forming synthetic chemistry. Diverse AI models empowered reaction optimization,

catalyst discovery, and compound synthesis, enhancing efficiency and accuracy.

However, challenges persist in terms of data scarcity, algorithm interpretability,

robust experimental validation, accurate detection and analysis of reaction results,
7, 2024



ll
OPEN ACCESS

Please cite this article in press as: Jiang et al., Artificial intelligence and automation to power the future of chemistry, Cell Reports Physical Sci-
ence (2024), https://doi.org/10.1016/j.xcrp.2024.102049

Voices
and the capture of the complexity of chemical systems. Integrating AI with robotics

and automation could revolutionize experimental workflows. Innovative strategies

such as active learning and Bayesian optimization can significantly accelerate the cy-

cle of new reaction discovery and optimization, paving the way for the autonomous

laboratory of the future.

Artificial general intelligence (AGI), particularly LLMs, has made substantial contri-

butions to AI in chemistry. AGI can comprehend chemical knowledge, extract and

analyze chemical texts, and predict chemical properties or reactivity. Additionally,

it can assist researchers in planning and conducting experiments, reducing time

and costs. AI chemistry assistants powered by LLMs can reason about complex

chemistry problems by connecting to various chemical tools and databases. Howev-

er, challenges related to reliability and professional competence need to be ad-

dressed for wider application in chemical research. As AGI technology progresses,

it holds the potential to become more effective in complex chemical tasks, tran-

scending its role as a ‘‘bridge between humans and machines.’’

In conclusion, AI has the potential to significantly impact synthetic chemistry by

making various aspects of the research process more intelligent. Although there

are challenges to overcome, collaborative efforts among interdisciplinary disciplines

can lead to innovative solutions. The integration of high-quality data, advanced mo-

lecular feature engineering, autonomous laboratory technologies, and the applica-

tion of AGI throughout the entire research pipeline will bring in a ‘‘Cambrian period’’

for synthetic chemistry.
Kuangbiao Liao

Guangzhou Laboratory
Harnessing HTE to empower AI-driven synthetic chemistry

In 1828, the German chemist Wöhler achieved a milestone with the synthesis of urea,

marking the inception of synthetic chemistry. Over the ensuing two centuries, syn-

thetic chemistry has been a cornerstone of scientific progress, significantly shaping

human society. The outcomes of synthesis are typically influenced by a multitude

of variables, such as reaction conditions and substrate structures. Chemists aim to

elucidate the complex relationship between these variables and outcomes, yet the

vast reaction space poses a significant challenge. Although human instinct and intu-

ition have driven the development of synthetic chemistry, it is essentially an experi-

ment-based science. Synthetic chemistry has long been associated with ineffi-

ciencies and laborious processes. For instance, the optimization of reactions,

discovery of new reactions, and the synthesis of complex natural products often de-

mand months or even years of meticulous work from chemists.

Fast forward to Synthesis 4.0, propelled by the fourth industrial revolution, which

integrates cutting-edge technologies such as automation, data science, and AI into

chemistry. Embracing this paradigm shift, the chemistry community has begun

developing AI chemistry to address pertinent chemical challenges. AI is ubiquitous

today, powering everything from personalized recommendations to autonomous

driving and drug discovery. It has emerged as an effective tool to identify hidden pat-

terns in data. Synthetic chemistry, to some extent, can entail pattern recognition for

the construction of target molecules. To enhance understanding and broaden syn-

thetic reaction applications, there has been a surge in interest among chemists in

developing AI-based models for reaction prediction. The reaction dataset,

comprising substrate structures, reaction conditions, and outcomes (yield or selec-

tivity), forms the cornerstone for developing AI-based models. Although vast

amounts of data have been accumulated, issues such as bias toward positive data,

data inconsistency, and lack of annotation plague both public and proprietary data-

bases. Consequently, several AI-based models for reaction prediction have been
Cell Reports Physical Science 5, 102049, July 17, 2024 3
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reported, yet the task of building accurate prediction models remains challenging

and urgently needed.

The issue of data collection could potentially be addressed through HTE, a cut-

ting-edge technology that harnesses robotics to conduct numerous reactions in par-

allel, offering a pathway to standardized and reliable datasets. By virtue of its capac-

ity to minimize bias toward data-point selection, HTE holds the potential to markedly

enhance the quality and comprehensiveness of collected data. Through rapid and

parallel experimentation, HTE facilitates the generation of robust datasets, thus

enabling more accurate and reliable analyses. Moreover, the standardized nature

of HTE protocols ensures consistency across experiments, further bolstering the reli-

ability of the resulting datasets. As a result, researchers can glean deeper insights

into reaction mechanisms, identify trends, and develop predictive models with

greater confidence. Ultimately, the integration of HTE into research workflows prom-

ises to revolutionize data collection practices in chemistry and propel advancements

in fields ranging from drug discovery to materials science.

Integrating automation, data science, and AI with traditional synthetic chemistry

has revolutionized our approach to exploring chemical space and addressing syn-

thetic challenges. Central to our endeavors is the development of effective, afford-

able, and user-friendly HTE instruments. Our journey into HTE-empowered AI chem-

istry represents a paradigm shift in chemical research, offering unparalleled

opportunities for exploration and discovery.
Shan Jiang

School of Physical Science and Technology,

ShanghaiTech University
Data-driven material discovery: Integrating AI with automation

Discovering new materials is crucial because it drives innovation across various in-

dustries and applications, significantly benefiting our society. However, the vast ma-

terial space, filled with enormous possibilities of potential compositions and struc-

tures, presents a huge challenge to the rapid identification of promising

candidates for specific applications. Traditional methods of material discovery rely

heavily on labor-intensive manual experiments. Researchers conduct experiments

to synthesize and characterize materials, and the process is both time-consuming

and resource intensive.

To overcome these obstacles, innovative approaches are necessary to effectively

explore the vast chemical space. Data-driven material discovery represents a trans-

formative paradigm in materials science, revolutionizing the approach to material

design. In this approach, data are recognized as valuable resources for deriving

knowledge from material datasets. By using advanced tools such as material data-

bases and AI, this paradigm aims to unlock new possibilities for material research

and has the potential to comprehensively explore the material space.

One of the most important applications of computation in material discovery to date

is property prediction, which is often faster than experimental characterization. HT

computation is an effective method for evaluating material performance and discov-

ering new materials. As the number of structures to be screened increases, computa-

tional calculations become impractical due to the high cost. AI techniques, such as ma-

chine learning (ML), can learn patterns from known datasets and make predictions

about unknown data in the field of materials. These techniques can be trained on data-

sets of known materials and their properties and then used to predict the properties of

new materials, significantly reducing the cost and time required for material discovery

and design. Furthermore, the ideal scenario involves successfully engaging in ‘‘inverse

design,’’ when amolecule is specifically designed to fulfill a set of predefined criteria for

a functional material using AI. Inverse design leverages AI to reverse the traditional

material discovery process. Instead of synthesizing materials and then testing their
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properties, this approach starts with the desired properties and uses AI algorithms to

design molecules that are predicted to exhibit these traits.

Given the immense scope of synthesizing and testing a vast array of materials, inte-

grating automation and robotics into the process can dramatically increase the vol-

ume of materials that can be synthesized and evaluated—potentially by several or-

ders of magnitude. Automation technologies, such as automated synthesis robots

and HT screening systems, can handle repetitive and labor-intensive tasks with pre-

cision and speed, freeing researchers to focus on analysis and innovation. Robotics

can perform complex synthesis protocols, prepare samples, and conduct preliminary

evaluations of material properties all while ensuring high consistency and repeat-

ability. This enhancement not only accelerates the pace of discovery but also ex-

pands the range of materials that can be practically explored and developed.

In the future, automation and AI are poised to significantly accelerate both exper-

imental and computational research programs, particularly when these technologies

are integrated to complement each other. This synergy between automated exper-

imental processes and AI-driven computational analysis creates a feedback loop that

can rapidly iterate and refine hypotheses and experiments, thereby speeding up the

discovery and development of new materials and technologies. As AI and automa-

tion become increasingly sophisticated, their integration is expected to lead to

more efficient, innovative, and productive scientific research.
Jing Ma

School of Chemistry and Chemical Engineering,

Nanjing University
Open black box for material design: Insights learned from cross-scale and

closed-cycle automation workflow

AI has made considerable advances in material design, e.g., ML-assisted molecular

properties prediction, force-field generation at atomic or molecular scale, HT

screening of material candidates, function-directed inverse design strategy, and

automatic robotics synthesis. Researchers dream of developing efficient and high-

performance AI tools with traits such as high accuracy, high speed, high dimensional

material space, HT, high transferability, high accessibility, and high consistency to

develop novel functional materials. It is really a dilemma: the higher accuracy the

ML model achieves, the more hyperparameters are involved and, thus, the less opa-

que the model is. Some researchers also have doubts about the ability of insight

learning and creative thinking from data and ML, in comparison with human wisdom

in using the knowledge and imagination for materials discovery.

Many attempts have been devoted to increasing explainability in the materials

design workflow of ‘‘structural/functional units design—materials synthesis—mate-

rials characterization/spectral assignment—performance optimization/enhance-

ment’’ with the embedding of material knowledge or the learned features. However,

those explainable ML models and AI techniques have been built in separate stages

with different spatial and time scales. One could conceive that joint learning or

sequential learning in two or more different stages could probably lead to insight

through increasing time and length scales to cross scales from atom, molecule,

aggregate, and then phase domain to device. Cross-scale machine learning is still

rare due to the huge gaps in features and models between different scales. The

lack of alignment of computational results at the microscopic scale and in real-world

experiment feedback hinders closing the loop of automatic ‘‘design & prediction—

synthesis & assembly—characterization—performance optimization.’’

In my opinion, graphs and graph AI are good standing points for bridging the

different scales to allow a closed-cycle automatic material exploration in near future.

The nodes and edges in graph data could efficiently convey the relative information

between different nodes, allowing better learning of relationships in many successful
Cell Reports Physical Science 5, 102049, July 17, 2024 5
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applications of AI in our daily life and scientific research. With a long history, graphs

have indeed been used in molecular systems to simplify the Hamiltonian quantum

mechanics of the p-conjugated hydrocarbons or metal complexes by using the ad-

jacency matrix and connectivity. At a molecular scale, it is quite natural to set each

atom as a node and each bond as an edge without or with the periodic boundary

condition. Graph data structure can also be applicable to mesoscopic property pre-

diction with the coarse-grained model by taking the grain beads as nodes and inter-

grain interaction as edges. The conversion of various experimental spectra (such as

XRD, IR, and XAS) and images (STM/STEM/SPM) into graph structural data yields

good performance in material-specific applications.

Although an LLM has boosted the transformation of the multi-modal input to chem-

ically or physically meaningful symbols, knowledge is usually lacking in LLMs. Some

novel and user-friendly algorithms are desired for automatic knowledge graph (KG)

construction and reinforcement learning from human feedback. The relation between

the reaction substrates andmaterial synthesis conditions (e.g., solvent and temperature

selections) could be explored in KGs. The dynamic integration of LLMs with KGs would

provide numerous opportunities for realizing multi-model and multi-scale synergism,

closing the loop of computation-experiment, and automatically optimizing multi-tasks.

Such powerful material agents are expected to open a black box in prediction models

and provide new insight into material innovation.
Jun Jiang

Key Laboratory of Precision and Intelligent

Chemistry, University of Science and

Technology of China
Powering the future of chemical and material discoveries with AI-driven

autonomous chemistry

Chemistry and materials science are undergoing a profound transformation driven

by advancements in AI and robotics. This transformative shift toward autonomous

chemistry is characterized by integrating sophisticated AI algorithms and automated

systems into the fabric of daily laboratory research activities, fundamentally chang-

ing how scientific investigations are conducted. Recent advancements in AI, partic-

ularly in LLMs, have greatly enhanced autonomous chemistry. AI models and agents

have become integral to automating chemistry, proving instrumental in closing the

predict-make-measure discovery loop and interpreting scientific data. AI-driven

autonomous systems utilize their intelligent capabilities to plan experiments,

interact with robotics, and manage data, significantly improving experimental effi-

ciency and precision. Alongside AI, robotics has also made significant strides in lab-

oratory automation, offering diverse systems tailored to meet the complex demands

of autonomous chemistry. These systems include automated HT platforms, precision

robotic arms, mobile robots, collaborative robots, and others.

Autonomous chemistry has been progressing through three major phases, each

marked by significant advancements in the field’s approach and capabilities. Phase

one involves the establishment of individual autonomous labs designed to tackle spe-

cific challenges. These labs typically operate in isolation, focusingon localizedproblems

without much inter-lab communication or data sharing. Currently, most autonomous

labs globally are in this phase.We are rapidly transitioning into phase two: adopting co-

ordinated strategies such as cloud-based systems for delocalized and asynchronous

research. This phase involves distributing tasks in an experimental workflow andorches-

trating themviaAI, facilitating seamless data and resource integration across labs, over-

coming geographical and temporal constraints to expand discovery potential.

On the horizon, phase three envisions advanced nationwide or global networks of

intelligent scientist systems that we have conceptualized and proposed. We envision

these integrated networks of intelligent systems conducting end-to-end autono-

mous research, showing high degrees of cognitive and operational integration by
7, 2024
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merging AI models with robotic processes. Notably, this phase aims to develop hu-

man-machine collaborative systems, where cognitive intelligence supports the pro-

posal and analysis of scientific problems through knowledge fusion. This process

drives robotic experimental systems and computer simulations, producing high-

quality data that feed back into the AI models to optimize and refine them, thereby

solving complex scientific challenges. This integration transforms autonomous labs

into highly connected, efficient entities that transcend traditional research bound-

aries, enabling scientific breakthroughs on a nationwide or global scale. The imple-

mentation of intelligent scientist systems, as we envision, will involve creating

centralized platforms that gather and analyze data, develop intelligent models,

and refine scientific methods and technologies. These platforms, acting as scientific

‘‘brains,’’ will guide distributed innovation facilities that support users in achieving

specific scientific breakthroughs. This integrated approach will foster a new form

of scientific research organization: centralized, resource-intensive development

and deployment of scientific intelligence will drive distributed, localized experi-

mental operations to catalyze innovations. This structure ultimately lowers the bar-

riers to interdisciplinary and cross-domain research, enabling scientists and re-

searchers in both academia and industry at all levels to engage in highly

specialized experimentation and personalized scientific inquiry.

As the landscape of chemical and materials science research continues to evolve,

the potential of AI-driven autonomous chemistry is becoming increasingly

apparent. The journey from individual autonomous labs to extensive networks

of intelligent systems will catalyze a revolutionary shift in how we approach

scientific inquiries and challenges. This transition maximizes the efficiency and ef-

ficacy of autonomous chemistry research and democratizes the ability to innovate

across academic disciplines and various industries. As we move forward, the

continued and evolving fusion of state-of-the-art AI and robotic technologies

with chemistry and materials science promises to accelerate the discovery of supe-

rior chemicals and materials with desired functions, delivering significant benefits

to society at large.
Zhigang Shuai

School of Science and Engineering, The Chinese

University of Hong Kong.
Time for AI to meet organic light-emitting diodes

The molecular design of organic light-emitting diode (OLED) materials requires a

data-driven technique for three essential parameters: the emission wavelength,

the peak width for better color purity, and quantum efficiency for brightness.

OLEDs have become the focus of research in both academia and industry since the

discovery of room-temperature low-voltage thin-film organic electroluminescence.

Now, OLEDs have been widely used in mobile phone and television displays. OLEDs

devices do not need backlight, allowing energy-efficient display with wide viewing

angles, high-contrast color, fast response, flexibility, and even transparency. Accord-

ing to IDTechEx, by 2030 the global market value for OLEDs will reach over 60

billion USD.

Optical emission stems from the lowest molecular excited state according to Ka-

sha’s rule. The emission wavelength is determined by the optical gap and the radi-

ative decay rate is proportional to the square of transition dipole moment (oscil-

lator strength). For fluorescence, it is the lowest singlet excited state (S1) and for

phosphorescence the lowest triplet (T1), whereas for TADF, it is the nature of S1
and the S1–T1 gap (relevant for reverse intersystem crossing. It is a formidable chal-

lenge to determine the positions of S1 and T1 as well as the transition dipole

moment including spin-orbit coupling through quantum chemistry. It seems the

only choice for calculating the excited state for a typical OLEDs molecule with a
Cell Reports Physical Science 5, 102049, July 17, 2024 7
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few tens of atoms is the time-dependent density functional theory. And after more

than 20 years of efforts on the assessments of adjusting the exchange-correlation

functionals, a generally precise and reliable computational approach is still elusive,

especially for TADF for which both S1 and T1 should be determined at the

same time.

Narrower full width at half maximum (FWHM) for the emission spectrum is de-

manded for color purity. In general, for highly efficient OLED molecules, both the

emission peak position and FWHM in thin film and solution phases should be close

to each other, indicating weak intermolecular interaction in amorphous film, so that

prediction for molecular emission FWHM could serve as good indicator for color pu-

rity. In this respect, the recently proposed multi-resonant TADF molecules demon-

strated narrow emission. Intrinsically, it is the electronic excited state vibronic

coupling that determines the FWHM. It has been shown that the thermal vibration

correlation formalism (TVCF) as implemented in a computational package MOMAP

can present systematic prediction on the emission line-shape including FWHM, if not

for the absolution value within 10%–20% error.

Nevertheless, as far as the quantum efficiency is concerned, the situation becomes

much more complicated. The total quantum efficiency is expressed as a product of

three factors: (1) that of carrier recombination rate (not all the electro-pumped carries

could form an electron-hole pair because there is always a current in the device); (2)

that of portion for emissive species limited by spin statistics; (3) that of molecular lumi-

nescence quantum efficiency h = kr
kr+knr

, where according to Einstein’s spontaneous ra-

diation theory, the spontaneous radiative decay rate is kr =
8p2n3

fi

3ε0-c3
m2
fiz

fvfi
2

1:5 (f is the oscil-

lator strength and n is the emission wavenumber), and the essential challenge lies in

determination of non-radiative decay knr. Although kr is relatively easy to predict, knr
is far from that. TVCF has been a good starting point to reveal the relationship between

quantum efficiency and molecular structure for a number of OLED systems, which had

been not only employed toOLEDquantumefficiency but also applied to rationalize ag-

gregation-induced emission and pure organic phosphorescence, as well as to molecu-

lar design of optical sensing/detection and photocatalysis. To meet the ever-growing

OLED market, precise prediction for quantum efficiency as well as wavelength and

FWHM is becoming imperative, and the data-driven AI approach seems to be the

most appropriate choice.
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