SCIENCE CHINA Chemistry

ARTICLES

https://doi.org/10.1007/s11426-023-1902-0

Enhancing the deep-red/near-infrared fluorescence of higher rylene diimides *via* the chalcogen-annulation strategy

Kai Chen¹, Xiao Chen², Ke Hu³, Yilun Zhao¹, Yujian Liu², Guogang Liu^{1*}, Jinquan Chen³, Wei Jiang^{1,2}, Zhigang Shuai², Da-Hui Qu¹ & Zhaohui Wang^{1,2*}

¹Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China;

²Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China;

³State Key Laboratory of Precision Spectroscopy, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China

Received August 15, 2023; accepted December 15, 2023; published online January 5, 2024

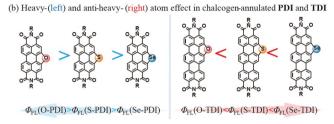
Deep-red/near-infrared fluorescence is highly suitable for bioimaging owing to its ability to deeply penetrate tissues, organs, and live animals. However, developing organic fluorophores with high deep-red/near-infrared fluorescence quantum yield (Φ_{FL}) and fluorescent brightness remain a significant challenge owing to the energy gap law. Herein, we developed a straightforward and effective chalcogen-annulation strategy by introducing O, S and Se into the bay region of **TDI** and **QDI** fluorophores, realizing the increase of Φ_{FL} and fluorescent brightness up to 10 times. To our best knowledge, this study potentially stands as the pioneering instance showcasing the anti-heavy-atom effect of chalcogens, and the absolute Φ_{FL} (93%) and fluorescent brightness (128,200 cm⁻¹ mol⁻¹ L) of **Se-TDI** is among top deep-red/near-infrared organic fluorophores currently available. The femto-second transient absorption (fs-TA) measurements show the absence of obvious changes of the excited state lifetime after the introduction of chalcogens in **TDI** and **QDI** fluorophores, indicating that intersystem crossing (ISC) can be neglected in TDI and QDI fluorophores. Theoretical calculations further reveal the chalcogen-annulation strategy increase the radiative rates and reduce the reorganization energy of several accepting modes at the ground state in **TDI** fluorophores, leading to the suppression of internal conversion (IC) processes. Our chalcogen-annulation strategy, which effectively increases the Φ_{FL} and restricts the IC processes, while remaining unaffected by the heavy-atom effect, offers novel insights and theoretical support for the design and synthesis of deep-red/near-infrared organic fluorophores with high Φ_{FL} and fluorescent brightness.

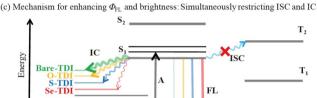
 π -extended rylene diimides, chalcogen-annulation strategy, deep-red/near-infrared fluorescence

Citation: Chen K, Chen X, Hu K, Zhao Y, Liu Y, Liu G, Chen J, Jiang W, Shuai Z, Qu DH, Wang Z. Enhancing the deep-red/near-infrared fluorescence of higher rylene diimides via the chalcogen-annulation strategy. Sci China Chem, 2024, 67, https://doi.org/10.1007/s11426-023-1902-0

1 Introduction

In recent years, there has been an increasing emphasis on deep-red/near-infrared fluorescence in the field of bioimaging, owing to its exceptional capacity to penetrate organoids, tissues, organs, and live animals deeply while maintaining a high signal-to-background ratio [1–4]. Among the various deep-red/near-infrared materials, organic fluor-ophores are highly favored for their excellent derivatization, versatility, and well-established safety profile accumulated through years of clinical use [5–24]. However, developing deep-red/near-infrared organic fluorophores with high fluorescence quantum yield ($\Phi_{\rm FL}$) and fluorescent brightness


^{*}Corresponding authors (email: liuguogang@ecust.edu.cn; wangzhaohui@mail.tsinghua.edu.cn)


(the product of molar extinction coefficient and Φ_{FL} , which is a crucial factor for enhancing imaging resolution) remains a significant challenge owing to the rapid internal conversion (IC) quenching processes, commonly known as the energy gap law [25].

Rylene diimides, a well-known class of polycyclic aromatic hydrocarbons, have garnered ever-increasing attention owing to their unique rigidly conjugated framework and excellent physicochemical properties, enabling their wide application in organic optoelectronic fields [26–43]. Among the rylene diimides family, perylene diimides (PDI) are renowned for their outstanding molar extinction coefficient (ε) and high $\Phi_{\rm FL}$ in the visible-light region [44–46], making them highly sought-after in the field of bioimaging [47–50]. However, their counterparts, the longitudinal π -extended terrylene diimides (TDI) and quaterrylene diimides (QDI) fluorophores, which possess deep-red/near-infrared absorption/emission and higher ε values than PDI [51,52], suffer from a notable decrease in $\Phi_{\rm FL}$ and fluorescent brightness. Although considerable progress have been made in synthetic and biological explorations concerning TDI and QDI fluorophores [53,54], achieving high deep-red/near-infrared $\Phi_{\rm FL}$ and fluorescent brightness in **TDI** and **QDI** fluorophores remains a great challenge [55-59]. Nevertheless, recent reports have presented a growing body of evidence on organic fluorophores containing heavy atoms that exhibit an intriguing anti-heavy-atom effect, where the presence of heavy atoms enhances their $\Phi_{\rm FL}$ and fluorescent brightness, contrary to conventional understanding [60-64]. Although the anti-heavy-atom effect of transition metals [61-66] and halogens [67-69] has been studied in a few instances in the literature, the potential anti-heavy-atom effect of chalcogens remains unexplored.

Herein, we successfully synthesized a series of TDI and QDI fluorophores through straightforward nitration and chalcogen-annulation in the bay region (Scheme 1). Our research revealed the chalcogen-annulation strategy can considerably enhance the deep-red/near-infrared $\Phi_{\rm FL}$ and fluorescent brightness of **TDI** and **QDI** fluorophores up to 10 times (Figure 1a). It is in stark contrast with the decrease in $\Phi_{\rm FL}$ and fluorescent brightness observed in the chalcogenannulation of the PDI fluorophores (Figure 1b) [37]. To the best of our knowledge, this is the first example of the antiheavy-atom effect observed with chalcogens ($\Phi_{FL}(\mathbf{O}\text{-}\mathbf{TDI})$ < $\Phi_{FL}(S-TDI) \le \Phi_{FL}(Se-TDI)$) and the Φ_{FL} (93%) and fluorescent brightness of **Se-TDI** (128,200 cm⁻¹ mol⁻¹ L) ranks among those of the top deep-red/near-infrared organic fluorophores available [70]. The time-resolved fluorescence lifetime and fs-TA experiment reveal that the fluorescence lifetimes are below 3.65 ns and the absence of obvious changes of the excited state lifetimes in TDI and QDI fluorophores. These results indicate that intersystem crossing (ISC) can be neglected in TDI and QDI fluorophores. The-

Figure 1 (a) Change rules in Φ_{FL} and fluorescent brightness of **TDI** and **QDI** fluorophores via chalcogen-annulation. (b) Heavy-atom and antiheavy-atom effect in chalcogen-annulated **PDI** and **TDI**. (c) Jablonski diagram of energy conversion processes of **TDI** fluorophores (color online).

oretical calculations further confirm these results and reveal the suppressing of internal conversion (IC) processes of **TDI** fluorophores by reducing the reorganization energy of several important accepting modes in the ground state (Figure 1c). Our chalcogen-annulation strategy, which effectively increases the $\Phi_{\rm FL}$ and restricts the IC processes, while remaining unaffected by heavy-atom effect, offers novel insights and theoretical support for the design and synthesis of deep-red/near-infrared organic fluorophores with high $\Phi_{\rm FL}$ and fluorescent brightness.

2 Results and discussion

2.1 Synthesis of chalcogen-annulated TDI and QDI

The choice of nitration reagents plays a crucial role in the nitration reaction, as **TDI** and **QDI** demonstrate high susceptibility to nitration (Scheme 1). The use of nitrating reagents such as nitric acid can lead to the formation of dinitroand trinitro-products within a short timeframe, diminishing the yield of mononitro-products and complicating the separation process [71]. Through extensive experimentation with various nitrating reagents, we ultimately opted for a relatively mild nitration reagent, tert-butyl nitrite, for the nitration reaction. By fine-tuning the reaction conditions, we achieved impressive yields of up to 90% for both **NO**₂-**TDI**

Scheme 1 Synthesis routes for O-TDI, S-TDI, Se-TDI, S-QDI and Se-QDI. (a) Tert-butyl nitrite, CH₂Cl₂, r.t., 4 h, 90%. (b) O-TDI: air, NMP, 190 °C, 12h, 15%; S-TDI: S powder, NMP, 190 °C,2 h, 60%; Se-TDI: Se powder, NMP, 190 °C,4 h, 50%. (c) Tert-butyl nitrite, CHCl₃, r.t., 4 h, 90%. (d) S-QDI: S powder, NMP, 190 °C,4 h, 50%; Se-QDI: Se powder, NMP, 190 °C,4 h, 50% (color online).

and NO₂-QDI using CH₂Cl₂ and CHCl₃ as solvents, respectively. The conditions for chalcogen-annulation reactions of NO₂-TDI closely resemble those of NO₂-PDI [37]. By employing N-methyl-2-pyrrolidone (NMP) as the solvent, air, S powder, and Se powder as the raw materials, we conducted the reactions at 180 °C for 12 h, 2 h, and 4 h, respectively. The yields of O-TDI, S-TDI and Se-TDI were 15%, 60%, and 50%, respectively. Using identical reaction conditions, we also successfully synthesized S-QDI and Se-QDI, both yielding 50%. Regrettably, our efforts to synthesize O-QDI were unsuccessful. The challenge stems from a notable decrease in reactivity observed in the annulation reaction between oxygen and longitudinally π -extended rylene diimides. This limitation might also account for the low yield of O-TDI at 15%, notably lower than the previously reported 30% yield for O-PDI [37]. The structures of O-TDI, S-TDI, Se-TDI, S-QDI and Se-QDI were unambiguously characterized using NMR and high-resolution mass spectra. These compounds have good solubility and stability in common organic solvents such as toluene, dichloromethane, tetrahydrofuran, dioxane and NMP.

2.2 Absorption, fluorescence and electrochemical properties

The ground-state electronic properties of **TDI** fluorophores

were explored using steady-state absorption spectroscopy measurement in toluene at room temperature (Figure 2a–2d). Bare-TDI, O-TDI, S-TDI and Se-TDI exhibit electronic absorption spectra corresponding to the $S_0 \rightarrow S_1$ transition with well-resolved vibronic bands having absorption maxima at $(\lambda_{Abs \text{ max}})$ 650 nm for **bare-TDI**, 638 nm for **O-TDI**, 624 nm for **S-TDI**, and 631 nm for **Se-TDI**. The $S_0 \rightarrow S_1$ electronic transition of TDI fluorophores is strongly coupled to the vinyl stretching mode of the TDI core, ensuring distinct vibronic progression in the absorption spectra (Figure 2a). The vibronic features are at 598 nm ($\lambda_{Abs \ 0-1}$) for bare-**TDI**, 589 nm ($\lambda_{\text{Abs }0-1}$) for **O-TDI**, 576 nm ($\lambda_{\text{Abs }0-1}$) for **S-TDI**, and 582 nm ($\lambda_{\text{Abs }0-1}$) for **Se-TDI**. The hypsochromic shift of chalcogen-annulated TDI are 12, 26 and 19 nm with respect to bare-TDI. The variation pattern of the UV-vis-NIR absorption spectra of QDI fluorophores is very similar to that of **TDI** fluorophores, where the $\lambda_{Abs \text{ max}}$ of **bare-QDI**, S-QDI and Se-QDI is 790 nm, 766 nm and 775 nm (Figure 2b), respectively. And their $S_0 \rightarrow S_1$ electronic transition is also strongly coupled to the vinyl stretching mode. And the vibronic features are at 685 nm ($\lambda_{Abs\ 0-1}$) for **bare-QDI**, 670 nm (λ_{Abs} 0-1) for **S-QDI**, and 676 nm (λ_{Abs} 0-1) for **Se-**QDI. The hypsochromic shift of S-QDI and Se-QDI is 24 and 15 nm with respect to bare-QDI.

Steady-state fluorescence spectroscopy measurements were performed to understand the photoluminescence properties of chalcogenide TDI and QDI fluorophores in toluene. The fluorescence spectra of bare-PDI, O-TDI, S-TDI, and Se-TDI exhibit mirror-image characteristics with their respective steady-state absorption spectra (Figure 2c). The fluorescence emission peaks are observed at 667 nm for **bare-TDI** (Stokes shift, $\Delta v'' \approx 392.1 \text{ cm}^{-1}$), 658 nm for **O**-**TDI** $(\Delta v'' \approx 476.4 \text{ cm}^{-1})$, 638 nm for **S-TDI** $(\Delta v'' \approx$ 351.7 cm⁻¹), and 645 nm for **Se-TDI** ($\Delta v'' \approx 344.0 \text{ cm}^{-1}$). According to the Franck-Condon principle, we can identify the distinct vibronic features in the fluorescence spectra $(\lambda_{Em 0-1})$ of bare-TDI, O-TDI, S-TDI and Se-TDI at 728 nm, 710 nm, 700 nm and 705 nm, respectively. These properties indicate that chalcogens-annulated TDI fluorophores are potential bioimaging dyes in deep-red regions. The fluorescence spectra of QDI fluorophores exhibit similar rigidity to **TDI** fluorophores, adhering to both the mirror-image rule and the Franck–Condon principle. The $\lambda_{Em\ max}$ and $\lambda_{Em\ 0-1}$ are at 790 nm and 860 nm for bare-QDI, 766 nm and 834 nm for S-QDI, 775 nm and 843 nm for Se-QDI, respectively (Figure 2d).

The absolute Φ_{FL} of **bare-TDI**, **O-TDI**, **S-TDI**, and **Se-TDI** was determined to be 72%, 79%, 90%, and 93% (Table 1), respectively. Additionally, the steady-state absorption spectra reveal that their corresponding maximal ε is 135,300, 127,700, 132,400 and 137,800 mol⁻¹ L cm⁻¹, respectively. The progressive improvement of Φ_{FL} , combined with the relatively constant maximal ε , results in a gradual increase in

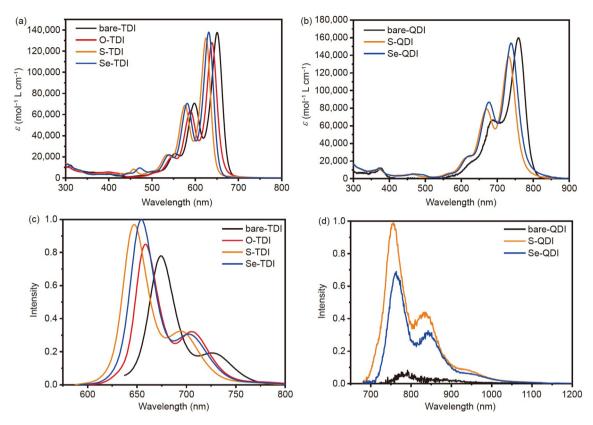


Figure 2 UV-vis-NIR absorption and fluorescence emission spectra of bare-TDI, O-TDI, S-TDI, Se-TDI, bare-QDI, S-QDI and Se-QDI in 10^{-5} mol L⁻¹ toluene solution. The intensity of fluorescence is determined using the ratio of absolute Φ_{FL} (color online).

fluorescent brightness. The fluorescent brightness values of **bare-TDI**, **O-TDI**, **S-TDI**, and **Se-TDI** are 97,400, 100,900, 119,200, and 128,200 cm⁻¹ mol⁻¹ L, respectively. This consistent pattern of increasing Φ_{FL} and fluorescent brightness signifies a notable anti-heavy atom effect. To our best knowledge, this represents the first reported instance of the anti-heavy atom effect of chalcogens. The chalcogen-annulated **QDI** also show improvements in Φ_{FL} and fluorescent brightness. The Φ_{FL} of **bare-QDI**, **S-QDI**, and **Se-QDI** was measured to be 1%, 10%, and 7% (Table 1), respectively. The corresponding maximal ε values of **bare-QDI**, **S-QDI**, and **Se-QDI** are 172,700, 150,100, and 155,400 mol⁻¹ L cm⁻¹, respectively. As a result, the fluorescent brightness of **bare-QDI**, **S-QDI**, and **Se-QDI** gradually increases to 1,700, 15,000, and 10,900 mol⁻¹ L cm⁻¹, respectively.

Cyclic voltammetry (CV) measurements were performed in CH₂Cl₂ to investigate the electrochemical properties of the **TDI** and **QDI** fluorophores. The results, as shown in **Table 1**, Figures S1 and S2, reveal that both **TDI** and **QDI** fluorophores exhibit similar redox behavior characterized with one reversible oxidation wave and one reversible reduction wave. This indicates that the introduction of chalcogens to the **TDI** and **QDI** skeletons has negligible impact on their electrochemical properties. The half-wave reduction/oxidation potentials were -1.14/0.71 V for **bare-TDI**, -1.17/0.78 V for **O-TDI**, -1.19/0.76 V for **S-TDI**,

-1.20/0.75 V for **Se-TDI**, -1.12/0.30 V for **bare-QDI**, -1.18/0.36 V for **S-QDI** and -1.17/0.39 V for **Se-QDI** vs. Fc/Fc⁺. Therefore, the LUMO/HOMO/energy gap was determined to be -3.83/-5.36/1.53 eV for **bare-TDI**, -3.82/-5.41/1.59 eV for **O-TDI**, -3.82/-5.40/1.60 eV for **S-TDI**, -3.81/-5.38/1.57 eV for **Se-TDI**, -3.80/-5.00/1.20 eV for **bare-QDI**, -3.75/-5.04/1.29 eV for **S-QDI** and -3.74/-5.04/1.30 eV for **Se-QDI**.

2.3 Femtosecond transient absorption analysis and time-resolved fluorescence lifetime measurement

The excited-state dynamics of the **TDI** and **QDI** fluorophores were probed by femtosecond transient absorption
(fs-TA) measurements in a toluene solution (0.2–0.3 OD at
595 nm for **bare-TDI** and **O-TDI**, 575 nm for **S-TDI**,
580 nm for **Se-TDI**, 667 nm for **bare-QDI**, **S-QDI** and **Se-QDI**). The spectral and kinetic components of the fs-TA
spectra were analyzed by singular value decomposition
analysis, followed by global analysis using the Glotaran
program package [72]. The fs-TA spectra of **bare-TDI**, **O-TDI**, **S-TDI**, and **Se-TDI** in the initial few picoseconds after
excitation display a negative ground-state bleach (GSB) and
stimulated emission (SE) ranging from 500 to 750 nm
(Figure 3a–3d) along with positive excited-state absorption
(ESA) between 750 and 1,300 nm (Figure S3), correspond-

Table 1 Photophysical and electrochemical properties of bare-TDI, O-TDI,S-TDI, Se-TDI,bare-QDI, S-QDI and Se-QDI and Se-Q

Compound ^{a)}	$\lambda_{\rm abs\ max}$	ε	1 ()	${m \Phi}_{\mathrm{FL}}^{}(\mathrm{a}),\mathrm{b})}$	$B_{ m F}$	$E_{\rm LUMO}^{\rm c),f)}$	$E_{\mathrm{HOMO}}^{\mathrm{c),f)}}$	$E_g^{\ \mathrm{d})}$	$ au_{ m F}$	$k_{\rm r}^{\rm e)}$	k _{nr} e)
	(nm)	$(\text{mol}^{-1} \text{ L cm}^{-1})$	$\lambda_{\rm em} \ ({\rm nm})$	(%)	$(\text{mol}^{-1} \text{ L cm}^{-1})$	(eV)	(eV)	(eV)	(ns)	(10^7s^{-1})	(10^7s^{-1})
Bare-TDI	650	135,300	667, 728	72	97,400	-3.83	-5.36	1.53	3.52	20.5	7.95
O-TDI	638	127,700	658, 710	79	100,900	-3.82	-5.41	1.59	3.64	21.7	5.77
S-TDI	624	132,400	638, 700	90	119,200	-3.82	-5.42	1.60	3.62	24.9	2.76
Se-TDI	631	137,800	645, 705	93	128,200	-3.81	-5.38	1.57	3.60	25.8	1.94
Bare-QDI	758	172,700	790, 860	1	1,700	-3.80	-5.00	1.20	0.45	2.22	220
S-QDI	731	150,100	766, 834	10	15,000	-3.75	-5.04	1.29	1.27	7.87	70.9
Se-QDI	737	155,400	775, 843	7	10,900	-3.74	-5.04	1.30	1.02	6.86	91.2

a) Measured in toluene $(1.0 \times 10^{-5} \text{ mol L}^{-1})$. b) Determined by absolute quantum yield method. c) Calculated by the onset of the first reduction peak according to $E_{\text{LUMO}} = -(4.8 + E^{\text{re}}_{\text{onset}})$ eV, $E_{\text{HOMO}} = (4.8 + E^{\text{ox}}_{\text{onset}})$ eV. d) $E_{\text{g}} = E_{\text{LUMO}} = E_{\text{HOMO}} = E_{\text{HOM$

ing to the singlet excited-state $(S_1 \rightarrow S_n; n > 1)$ of **bare-TDI**, O-TDI, S-TDI and Se-TDI [73]. The decay associated difference spectra (DADS) of each bare-TDI, O-TDI, S-TDI and **Se-TDI** were extracted (Figure 3e–3h). Three lifetimes $(\tau_1, \tau_2, \text{ and } \tau_3)$ were extrapolated for **bare-TDI**, **S-TDI** and **Se-TDI**. Two lifetimes (τ_2 , and τ_3) were extrapolated for **O**-**TDI**. Presumably, τ_1 (1.08, 5.48 and 6.65 ps for bare-TDI, S-**TDI** and **Se-TDI**, respectively) are assigned to the solvation or vibration-mediated relaxation to the lowest vibronic-state of the S_1 , τ_2 (452, 262, 370 and 481 ps for **bare-TDI**, **O-TDI**, **S-TDI** and **Se-TDI**, respectively) corresponds to solvation of hot S₁ state as well as direct relaxation to the ground state from these higher vibrational S_1 state, and τ_3 (3.59, 3.34, 3.33) and 3.65 ns for bare-TDI, O-TDI, S-TDI and Se-TDI, respectively) corresponds to the decay of the lowest vibrational S₁ state to the ground-state. Meanwhile, the observed singlet lifetimes are comparable to the fluorescence lifetime of these molecules (3.53, 3.64, 3.62 and 3.60 ns for bare-TDI, O-TDI, S-TDI and Se-TDI, respectively, as shown in Table 1 and Figure S4.

The excited-state dynamics of **QDI** fluorophores are very similar to that of **TDI** fluorophores. The longest excited-state lifetimes of **bare-QDI**, **S-QDI** and **Se-QDI** are 0.28, 1.21 and 1.49 ns (Figure S5), respectively, and the excited-state lifetimes are also comparable to the fluorescence lifetimes (0.45, 1.27 and 1.02 ns for **bare-QDI**, **S-QDI** and **Se-QDI**, respectively, as shown in Table 1 and Figure S6). Based on the fs-TA and time-resolved fluorescence lifetime experiments, it can be concluded that ISC process is negligible in the **TDI** and **QDI** fluorophores, that is, the presence of heavy atoms does not accelerate the process of ISC.

2.4 Theoretical calculations

To investigate the reason of enhancing the Φ_{FL} and fluorescent brightness of **TDI** and **QDI** fluorophores, we conducted comprehensive theoretical calculations to thoroughly investigate the effect of annulation of chalcogens on these

processes. The rate of intersystem crossing $(k_{\rm ISC})$ is influenced by two crucial factors: the energy gap between the singlet- and triplet-states (ΔE_{ST}), and the total spin-orbit coupling matrix elements (H_{SOC}) [74]. According to perturbation theory, k_{ISC} between singlet (S_m) and triplet (T_n) states is proportional to the square of their H_{SOC} . And according to the energy gap law, $k_{\rm ISC}$ is exponentially related to their $\Delta E_{\rm ST}$ (equation 1). The oscillator strength of singlet transitions confirms that the $S_0 \to S_1$ transition is the most probable in **TDI** fluorophores (Table S1 and S2). Additionally, the T₃ state is too high in energy to be reached in room temperature (Table S2 and S3). Therefore, the $S_1 \rightarrow T_1$ and $S_1 \rightarrow T_2$ transition may have the most significant impact on $k_{\rm ISC}$. We employed the molecular materials property prediction package (MOMAP) [75-78] to calculate the rates of transitions from S_1 to S_0 , T_1 and T_2 .

As shown in Table 2, the fluorescence rates of bare-TDI and chalcogen-annulated TDI are significantly larger than the internal conversion rates, leading to high $\Phi_{\rm FL}$. The calculated rates of fluorescence ($k_{\rm F}$, also called $k_{\rm r}$) exhibit an approximate 25% increase from bare-TDI to O-TDI, S-TDI, and Se-TDI, aligning with experimental trends. Considering the nearly identical oscillator strengths among the four molecules (Table S2) and minimal differences in S_1 – S_0 energy gaps, it seems that changes in vibrational properties contribute to the increase in $k_{\rm F}$. However, this observed increase remains marginal, and conducting a comprehensive analysis to ascertain the precise underlying causes of the enhanced $\Phi_{\rm FL}$ remains challenging.

On the other hand, the intersystem crossing rates are all negligible in **TDI** fluorophores. The large energy gap and negligible spin–orbital coupling matrix element between S_1 and T_1 make the $S_1 \rightarrow T_1$ transition very slow. Meanwhile, the transition from $S_1 \rightarrow T_2$ is also negligible, being very different from previously reported **PDI** systems [37]. The annulation of chalcogens in **TDI** fluorophores does not considerably alter the energy gap between S_1 and T_2 states, and the difference is higher than 0.25 eV in **bare-TDI**, **O**-

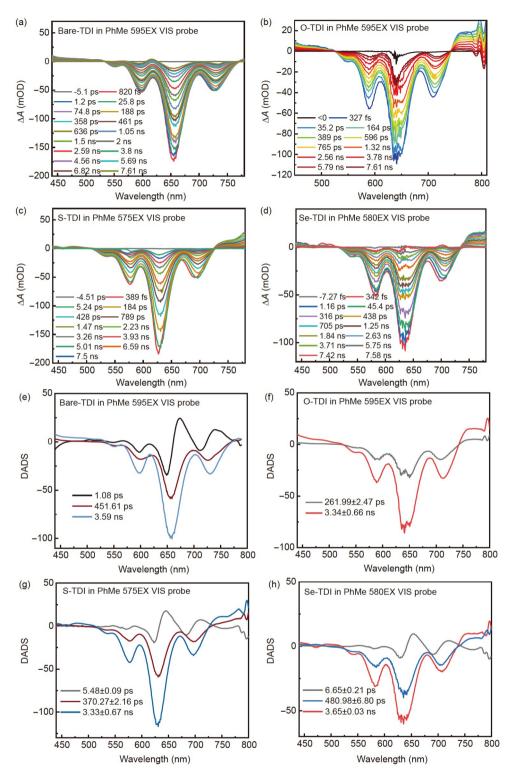


Figure 3 Femtosecond transient absorption spectra of (a) bare-TDI, (b) O-TDI, (c) S-TDI and (d) Se-TDI in toluene. Reconstructed decay-associated difference spectra (DADS) of (e) bare-TDI, (f) O-TDI, (g) S-TDI and (h) Se-TDI extracted from global analysis (color online).

TDI, **S-TDI**, and **Se-TDI**. Generally, energy barriers that can be crossed at room temperature are usually below 0.2 eV. As a result, the transition from S_1 to T_2 in **TDI** fluorophores is nearly forbidden. Furthermore, the $H_{\rm SOC}$ of **TDI** fluorophores is less than 0.1 cm⁻¹. The high $\Delta E_{\rm ST}$ and very low

 $H_{\rm SOC}$ result in the inhibition of ISC (Table 2).

$$k_{\rm ISC} \propto \left| \langle S_{\rm m} | \widehat{H}_{\rm SOC} | T_{\rm n} \rangle \right|^2 \exp(-\Delta E / kT)$$
 (1)

To further analyze why $\Delta E_{\rm ST}$ and $H_{\rm SOC}$ of chalcogen-annulated **TDI** and **QDI** do not increase with the atomic

number of O, S, and Se, we conducted calculations of electron density changes in the excited-states of each molecule and generated charge density difference (CDD) data and plots (Figure 4, Figures S7 and S8, Table 2 and Table S1) [79–81]. The contribution ratio of CDD from O, S, and Se atoms in chalcogen-annulated TDI is provided in Table 2 and Figure 4. It is evident that the CDD of S_1 and T_2 states in the chalcogen-annulated TDI primarily distributes on the conjugated skeleton. The contribution of O, S, and Se atoms to the excited S_1 (1.37, 2.56 and 2.81% for O, S and Se) and T_2 state (0.92, 0.54 and 2.19% for O, S and Se) is minimal and there is no significant change in CDD near the O, S, and Se atoms. Chalcogen-annulated QDI exhibit similar CDD data as chalcogen-annulated TDI (Table S1 and Figure S7), the S and Se atomic orbitals do not play a significant role in the S₁ \rightarrow T₂ transition process of chalcogen-annulated **QDI**. Consequently, we can conclude that the annulation of chalcogens does not significantly impact the properties of S₁ and T₂ states in chalcogen-annulated TDI and QDI, leading to negligible changes in $\Delta E_{S_1-T_2}$ and $H_{SOC\ S_1-T_2}$.

It is noteworthy that we also calculated the CDD of chalcogen-annulated **PDI**, as depicted in Figure S8 and Table S1. We observe substantial contributions of S and Se to the CDD of chalcogen-annulated **PDI** at T_2 state, reaching 31.5% and 42.5%, respectively. The high CDD of S and Se atoms leads to a significant reduction in the energy of the T_2 state (reflected by the decrease of $\Delta E_{S_1-T_2}$) and an increase in the

 $H_{\rm SOC}$ of $S_1 \rightarrow T_2$ transition. Consequently, the $k_{\rm ISC}$ in chalcogen-annulated **PDI** is significantly enhanced. These findings are supported by previous reports where chalcogen-annulated **PDI** follows the heavy-atom effect [37]. The CDD calculations provide a plausible explanation for the distinct fluorescence properties of chalcogen-annulated **PDI** with chalcogen-annulated **TDI** and **QDI**.

Interestingly, the internal conversion rates experience a substantial decrease by several folds. To investigate the impact of chalcogen-annulation on the IC process (the nonradiative transition from S_1 to S_0), we analyzed the groundstate reorganization energy of bare-TDI, O-TDI, S-TDI, and Se-TDI. The calculation results from MOMAP indicate negligible variation in the total reorganization energy of 769.0, 774.4, 790.3, and 783.2 cm⁻¹ for **bare-TDI**, **O-TDI**, S-TDI, and Se-TDI, respectively. However, the annulation of chalcogens enhances the rigidity of the annulative region and disrupts the molecular symmetry. This case leads to the dispersion of the large reorganization energy in bare-TDI into multiple smaller reorganization energies in O-TDI, S-TDI, and Se-TDI, leading to gradual decrease of the large reorganization energy in bare-TDI, O-TDI, S-TDI, and Se-**TDI** (255.56, 212.64, 157.58 and 148.44 cm⁻¹, respectively), and as a result, gradually decreasing the rate of IC in bare-TDI, O-TDI, S-TDI, and Se-TDI (Table 2).

A more specific analysis is as shown in Figure 5a. In **bare-TDI**, the vibrational modes at 1,318 cm⁻¹ and 1,611 cm⁻¹

Table 2 Calculated energies of S_1 , T_1 , T_2 , ΔE_{ST} , H_{SOC} , k_{ISC} values of $S_1 \rightarrow T_1$ and $S_1 \rightarrow T_2$ transition, fluorescence rate (k_F) and internal conversion rate (k_{IC}) of $S_1 \rightarrow S_0$ transition, in **Bare-TDI**, **O-TDI**, **S-TDI**, and **Se-TDI**. The contribution of oxygen, sulfur and selenium atoms to CDD is also given. All energies in eV, except H_{SOC} in cm⁻¹. Rates in s⁻¹

Compound	\mathbf{S}_1	T_1	T_2	$\Delta E_{ m ST} \ { m S}_1 - { m T}_2$	H_{SOC} S_1 – T_2	$\begin{array}{c} CDD \\ X\%S_1 \end{array}$	CDD X%T ₂	k_{F} S_{1} – S_{0}	$k_{\rm IC} \\ { m S}_1 - { m S}_0$	$k_{\text{ISC}} $ $S_1 - T_1^{a)}$	$k_{ m ISC} \ { m S}_1 \!\!-\! { m T}_2$
Bare-TDI	1.61	0.52	1.86	0.25	0.005	/	/	1.30×10 ⁸	4.10×10 ⁶	9.13×10 ⁻⁵	1.53×10 ⁻¹
O-TDI	1.69	0.65	1.95	0.26	0.085	1.37	0.92	1.29×10^{8}	8.00×10^{5}	3.08×10 ⁻²	3.06×10^{2}
S-TDI	1.71	0.71	1.96	0.25	0.087	2.56	0.54	1.55×10^{8}	6.09×10^{5}	2.90×10 ⁻³	4.33×10^{2}
Se-TDI	1.70	0.70	1.95	0.25	0.092	2.81	2.19	1.50×10^{8}	7.49×10^{5}	0	3.57×10^{2}

a) The Fermi golden rule may not be accurate for slow process such as the $k_{\rm ISC}$ of S_1-T_1 , but it is certain that they are negligible.

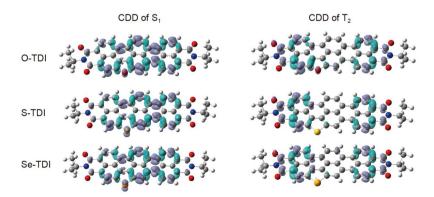


Figure 4 Charge density difference (CDD) plots of chalcogen-annulated **TDI** at S₁ and T₂ states at (TD-)B3LYP(GD3BJ)/def2svp level, the cyan represents the main distribution area of CDD (color online).

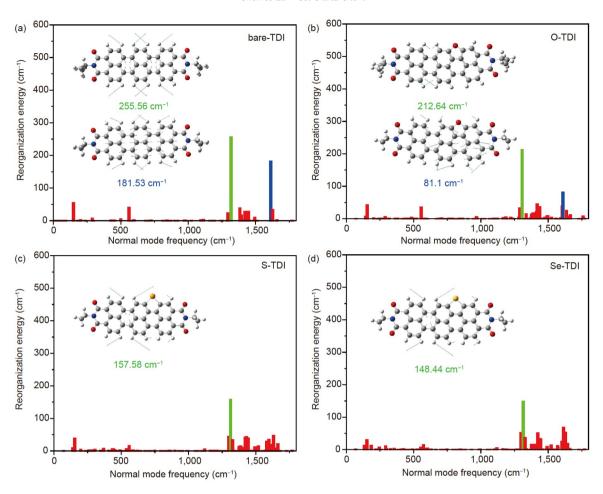


Figure 5 Calculated reorganization energies of $S_1 \rightarrow S_0$ are plotted against the normal-mode frequencies of (a) **bare-TDI**, (b) **O-TDI**, (c) **S-TDI** and (d) **Se-TDI**. High-intensity (>80 cm⁻¹) vibrational modes are shown as inset (color online).

have the highest reorganization energy, with values of 255.56 cm⁻¹ and 181.53 cm⁻¹, respectively. They can be interpreted as longitudinal and transverse stretching vibrations of the two bridged benzene rings (Figure 5a inset). In O-**TDI**, the vibrational mode at 1,318 cm⁻¹ changes to asymmetric longitudinal stretching vibrations primarily associated with the left hand-side benzene rings (upper inset of Figure 5b), while the right hand-side annulative region exhibits minimal vibration. Consequently, the reorganization energy of the vibrational mode at 1,318 cm⁻¹ decreases from 255.56 cm⁻¹ in **bare-TDI** to 212.64 cm⁻¹ in **O-TDI**. The vibrational mode at 1,611 cm⁻¹ splits into three vibrational modes of 1,605.9, 1,609.9 and 1,664.3 cm⁻¹ in **O-TDI**, and the highest reorganization energy of the vibrational mode nearby 1,611 cm⁻¹ also changes from 181.53 cm⁻¹ in bare-**TDI** to 81.1 cm⁻¹ in **O-TDI** (under inset of Figure 5b). This phenomenon becomes even more pronounced in S-TDI and **Se-TDI**, where the reorganization energy of these accepting modes at ground-state is 157.58 cm⁻¹ and 148.44 cm⁻¹, respectively (Figure 5c and 5d). Overall, the chalcogen-annulation of TDI fluorophores with the progressive decrease in reorganization energy of several most important accepting

modes in the ground-state effectively suppresses the likelihood of IC from S_1 to S_0 . This inhibition becomes more pronounced with the increase in atomic number of the chalcogens (**O-TDI** < **S-TDI** > **Se-TDI**).

3 Conclusions

In summary, we demonstrated a straightforward and effective chalcogen-annulation strategy to enhance the deep-red/near-infrared Φ_{FL} and fluorescent brightness of **QDI** and **TDI** fluorophores. The Φ_{FL} of **S-QDI** and **Se-QDI** is 10%, and 7% and their fluorescent brightness values are 15,000, and 10,900 cm⁻¹ mol⁻¹ L. These values represent a tenfold enhancement compared with those of **bare-QDI** ($\Phi_{FL} = 1\%$, and fluorescent brightness = 1,700 cm⁻¹ mol⁻¹ L). The Φ_{FL} (72%, 79%, 90% and 93%) and the fluorescent brightness (97,400, 109,000, 119,200, and 128,200 cm⁻¹ mol⁻¹ L) of **bare-TDI**, **O-TDI**, **S-TDI**, and **Se-TDI**, respectively, demonstrate a progressive increase. The continuous enhancement of Φ_{FL} and fluorescent brightness of **TDI** fluorophores exhibits the first example of the anti-heavy-atom effect of

chalcogens and the $\Phi_{\rm FL}$ (93%) and fluorescent brightness $(128,200 \text{ cm}^{-1} \text{ mol}^{-1} \text{ L})$ of **Se-TDI** is among the top of currently available deep-red/near-infrared fluorophores. The detailed mechanism is depicted in Figure 1c. The high energy gap and low H_{SOC} between the $S_1 \rightarrow T_1$ and $S_1 \rightarrow T_2$ indicate a negligible ISC rate in **TDI** fluorophores (the cyan squiggly arrow in Figure 1c). The chalcogen-annulation-induced alteration in vibrational properties potentially leads to a gradual increase in radiative rates within TDI fluorophores (green, orange, blue and red straight arrows in Figure 1c, respectively). Additionally, the decrease of the highest reorganization energy in the ground-states across bare-TDI, O-TDI, S-TDI, and Se-TDI (green, orange, blue and red squiggly arrows in Figure 1c, respectively) reduces the rate of IC in TDI fluorophores. Our chalcogen-annulation strategy provides valuable insights and theoretical supports for designing and synthesizing novel deep-red/near-infrared organic fluorophores with high $\Phi_{\rm FL}$ and brightness. The synthesis of chalcogen-annulated pentarylene- and hexarylene diimide fluorophores with high near-infrared-II fluorescence is ongoing in our laboratory.

Acknowledgements This work was financially supported by the National Natural Science Foundation of China (NSFC) (22235005), the National Postdoctoral Program for Innovative Talents (BX20200128), the 69th batch of Chinese postdoctoral general support (2021M691004), Shanghai Municipal Science and Technology Major Project (2018SHZDZX03) and the Fundamental Research Funds for the Central Universities, the Programme of Introducing Talents of Discipline to Universities (B16017). We acknowledge Prof. He Tian from East China University of Science and Technology for the constructive guidance.

Conflict of interest The authors declare no conflict of interest.

Supporting information The supporting information is available online at chem.scichina.com and link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

- 1 Weissleder R, Pittet MJ. Nature, 2008, 452: 580-589
- 2 Gigan S. Nat Photon, 2017, 11: 14-16
- 3 Li C, Chen G, Zhang Y, Wu F, Wang Q. J Am Chem Soc, 2020, 142: 14789–14804
- 4 Wei YC, Kuo KH, Chi Y, Chou PT. Acc Chem Res, 2023, 56: 689-699
- 5 Chen X, Pradhan T, Wang F, Kim JS, Yoon J. Chem Rev, 2012, 112: 1910–1956
- 6 Li X, Gao X, Shi W, Ma H. Chem Rev, 2014, 114: 590-659
- 7 Ando N, Soutome H, Yamaguchi S. *Chem Sci*, 2019, 10: 7816–7821
- 8 Wei R, Dong Y, Wang X, Li J, Lei Z, Hu Z, Chen J, Sun H, Chen H, Luo X, Qian X, Yang Y. J Am Chem Soc, 2023, 145: 12013–12022
- 9 Li H, Kim H, Xu F, Han J, Yao Q, Wang J, Pu K, Peng X, Yoon J. Chem Soc Rev, 2022, 51: 1795–1835
- 10 Gorka AP, Nani RR, Schnermann MJ. Acc Chem Res, 2018, 51: 3226–3235
- 11 Sun W, Guo S, Hu C, Fan J, Peng X. Chem Rev, 2016, 116: 7768–7817
- 12 Zhou HJ, Ren TB. Chem An Asian J, 2022, 17: e202200147
- 13 Lu H, Mack J, Yang Y, Shen Z. Chem Soc Rev, 2014, 43: 4778–4823

- 14 Yuan L, Lin W, Zheng K, He L, Huang W. Chem Soc Rev, 2013, 42: 622–661
- 15 Kamkaew A, Lim SH, Lee HB, Kiew LV, Chung LY, Burgess K. Chem Soc Rev, 2013, 42: 77–88
- 16 Zhao X, Zhang F, Lei Z. Chem Sci, 2022, 13: 11280-11293
- 17 Zhao J, Xu K, Yang W, Wang Z, Zhong F. Chem Soc Rev, 2015, 44: 8904–8939
- 18 Cao D, Liu Z, Verwilst P, Koo S, Jangjili P, Kim JS, Lin W. Chem Rev, 2019, 119: 10403–10519
- 19 Iglesias-Artola JM, Nadler A. Acc Chem Res, 2023, 56: 810-820
- 20 Chen Y, Chen S, Yu H, Wang Y, Cui M, Wang P, Sun P, Ji M. Adv Healthcare Mater, 2022, 11: e2201158
- 21 Neto BAD, Carvalho PHPR, Correa JR. Acc Chem Res, 2015, 48: 1560–1569
- 22 Xu Z, Jiang Y, Fan M, Tang S, Liu M, Law WC, Yang C, Ying M, Ma M, Dong B, Yong KT, Xu G. Adv Opt Mater, 2021, 9: 2100859
- 23 Mu J, Xiao M, Shi Y, Geng X, Li H, Yin Y, Chen X. Angew Chem Int Ed, 2022, 61: e202114722
- 24 Liu Y, Hao A, Xing P. Sci China Chem, 2023, 66: 2130-2140
- 25 Englman R, Jortner J. Mol Phys, 1970, 18: 145-164
- 26 Jiang W, Li Y, Wang Z. Acc Chem Res, 2014, 47: 3135-3147
- 27 Liang N, Meng D, Wang Z. Acc Chem Res, 2021, 54: 961-975
- 28 Jiang W, Wang Z. *J Am Chem Soc*, 2022, 144: 14976–14991
- 29 Zhan X, Facchetti A, Barlow S, Marks TJ, Ratner MA, Wasielewski MR, Marder SR, Adv Mater, 2011, 23: 268–284
- 30 Bialas D, Kirchner E, Röhr MIS, Würthner F. J Am Chem Soc, 2021, 143: 4500–4518
- 31 Würthner F, Saha-Möller CR, Fimmel B, Ogi S, Leowanawat P, Schmidt D. *Chem Rev*, 2016, 116: 962–1052
- 32 Schmaltz B, Weil T, Müllen K. Adv Mater, 2009, 21: 1067–1078
- 33 Ball M, Zhang B, Zhong Y, Fowler B, Xiao S, Ng F, Steigerwald M, Nuckolls C. Acc Chem Res, 2019, 52: 1068–1078
- 34 Weil T, Vosch T, Hofkens J, Peneva K, Müllen K. Angew Chem Int Ed, 2010, 49: 9068–9093
- 35 Young RM, Wasielewski MR. Acc Chem Res, 2020, 53: 1957–1968
- 36 Harvey SM, Wasielewski MR. *J Am Chem Soc*, 2021, 143: 15508–
- 37 Sivanarayanan J, Sebastian E, Vinod K, Würthner F, Hariharan M. J Phys Chem C, 2022, 126: 13319–13326
- 38 Hu YX, Miao J, Hua T, Huang Z, Qi Y, Zou Y, Qiu Y, Xia H, Liu H, Cao X, Yang C. *Nat Photon*, 2022, 16: 803–810
- 39 Cao X, Pan K, Miao J, Lv X, Huang Z, Ni F, Yin X, Wei Y, Yang C. J Am Chem Soc, 2022, 144: 22976–22984
- 40 Huang Z, Xie H, Miao J, Wei Y, Zou Y, Hua T, Cao X, Yang C. J Am Chem Soc, 2023, 145: 12550–12560
- 41 Wang Z, Sun Y, Lin S, Wang G, Chang X, Gou X, Liu T, Jin S, He G, Wei YC, Chou PT, Fang Y. Sci China Chem, 2021, 64: 2193–2202
- 42 Wu Y, Liu Y, Jiang W, Wang Z. Sci China Chem, 2023, 66: 2400–2407
- 43 Liu G, Liu Y, Zhao C, Li Y, Wang Z, Tian H. Angew Chem Int Ed, 2023, 62: e202214769
- 44 Powell D, Whittaker-Brooks L. *Mater Horiz*, 2022, 9: 2026–2052
- 45 Bao ST, Jiang H, Jin Z, Nuckolls C. Chirality, 2023, 35: 656-672
- 46 Renner R, Stolte M, Heitmüller J, Brixner T, Lambert C, Würthner F. Mater Horiz, 2022, 9: 350–359
- 47 Sun M, Müllen K, Yin M. Chem Soc Rev, 2016, 45: 1513-1528
- 48 Ashoka AH, Aparin IO, Reisch A, Klymchenko AS. Chem Soc Rev, 2023, 52: 4525–4548
- 49 Chen S, Zhou M, Zhu L, Yang X, Zang L. Chemosensors, 2023, 11:
- 50 Chen Y. Molecules, 2022, 27: 8628
- 51 Herrmann A, Müllen K. *Chem Lett*, 2006, 35: 978–985
- 52 Pschirer NG, Kohl C, Nolde F, Qu J, Müllen K. *Angew Chem Int Ed*, 2006, 45: 1401–1404
- 53 Ji C, Cheng W, Yuan Q, Müllen K, Yin M. Acc Chem Res, 2019, 52: 2266–2277
- 54 Mahlmeister B, Mahl M, Reichelt H, Shoyama K, Stolte M, Würthner

- F. J Am Chem Soc, 2022, 144: 10507-10514
- 55 Hu W, Prasad PN, Huang W. Acc Chem Res, 2021, 54: 697-706
- 56 Mehra KS, Jha S, Bhandary S, Mandal D, Mishra R, Sankar J. Angew Chem Int Ed, 2022, 61: e202205600
- 57 Cruz CM, Walsh JC, Juríček M. *Org Mater*, 2022, 4: 163–169
- 58 Chen M, Krzyaniak MD, Nelson JN, Bae YJ, Harvey SM, Schaller RD, Young RM, Wasielewski MR. *Proc Natl Acad Sci USA*, 2019, 116: 8178–8183
- 59 Pan HM, Wu CC, Lin CY, Hsu CS, Tsai YC, Chowdhury P, Wang CH, Chang KH, Yang CH, Liu MH, Chen YC, Su SP, Lee YJ, Chiang HK, Chan YH, Chou PT. J Am Chem Soc, 2023, 145: 516–526
- 60 Penfold TJ, Gindensperger E, Daniel C, Marian CM. Chem Rev, 2018, 118: 6975–7025
- 61 Steffen A, Tay MG, Batsanov AS, Howard JAK, Beeby A, Vuong KV, Sun XZ, George MW, Marder T. Angew Chem Int Ed, 2010, 49: 2349–2353
- 62 Tong GSM, Chow PK, Che CM. Angew Chem Int Ed, 2010, 49: 9206–9209
- 63 Eng J, Gourlaouen C, Gindensperger E, Daniel C. Acc Chem Res, 2015, 48: 809–817
- 64 Yan X, Cook TR, Wang P, Huang F, Stang PJ. *Nat Chem*, 2015, 7: 342–348
- 65 Cannizzo A, Blanco-Rodríguez AM, El Nahhas A, Šebera J, Záliš S, Vlček Jr. A, Chergui M. J Am Chem Soc, 2008, 130: 8967–8974
- 66 Wei YC, Chen BH, Ye RS, Huang HW, Su JX, Lin CY, Hodgkiss J, Hsu LY, Chi Y, Chen K, Lu CH, Yang SD, Chou PT. Angew Chem Int Ed, 2023, 62: e202300815
- 67 Boulanger SA, Chen C, Tang L, Zhu L, Baleeva NS, Myasnyanko IN,

- Baranov MS, Fang C. *Phys Chem Chem Phys*, 2021, 23: 14636–14648
- 68 Xu P, Qiu Q, Ye X, Wei M, Xi W, Feng H, Qian Z. Chem Commun, 2019, 55: 14938–14941
- 69 Mayerhöffer U, Fimmel B, Würthner F. Angew Chem Int Ed, 2012, 51: 164–167
- 70 Wu J, Shi Z, Zhu L, Li J, Han X, Xu M, Hao S, Fan Y, Shao T, Bai H, Peng B, Hu W, Liu X, Yao C, Li L, Huang W. *Adv Opt Mater*, 2022, 10: 2102514
- 71 Mehra KS, Jha S, Menon AM, Chopra D, Sankar J. *Chem Sci*, 2023, 14: 3147–3153
- 72 van Stokkum IHM, Larsen DS, van Grondelle R. *Biochim Biophys Acta (BBA) Bioenergetics*, 2004, 1657: 82–104
- 73 Margulies EA, Miller CE, Wu Y, Ma L, Schatz GC, Young RM, Wasielewski MR. *Nat Chem*, 2016, 8: 1120–1125
- 74 Sasikumar D, John AT, Sunny J, Hariharan M. *Chem Soc Rev*, 2020, 49: 6122–6140
- 75 Niu Y, Li W, Peng Q, Geng H, Yi Y, Wang L, Nan G, Wang D, Shuai Z. Mol Phys, 2018, 116: 1078–1090
- 76 Niu YL, Peng Q, Shuai ZG. Sci China Ser B-Chem, 2008, 51: 1153– 1158
- 77 Shuai Z. Chin J Chem, 2020, 38: 1223-1232
- 78 Peng Q, Yi Y, Shuai Z, Shao J. J Am Chem Soc, 2007, 129: 9333–9339
- 79 Liu Z, Lu T, Chen Q. Carbon, 2020, 165: 461-467
- 80 Zhu G, Chen Z, Song H, You A, Li Z. RSC Adv, 2022, 12: 18238– 18244
- 81 Shi YH, Wang F, Sun GY, Xie YZ. SpectroChim Acta Part A-Mol Biomol Spectr, 2022, 264: 120249