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An active learning force field for the thermal
transport properties of organometallic
complex crystals†

Wenjie Zhang, a Weitang Li b and Zhigang Shuai *ab

The accurate prediction of lattice thermal conductivity in organometallic thermoelectric materials is

crucial for advancing energy conversion technologies. Methods based on molecular dynamics simula-

tions can solve this problem well, but require force fields with sufficiently high accuracy. Due to the

complexity of chemical bonding in organometallic complex materials, the development of force fields

with high predictivity has been a long standing challenge, particularly when thermal transport is

concerned which requires even greater accuracy. In recent years, the rapid advancement of machine

learning force fields has offered substantial potential for addressing these issues. However, there remain

challenges for materials with large organometallic complexes in one unit cell and both inter- and intra-

molecular interactions. In this work, we employ an active learning approach combined with deep neural

networks to develop a force field taking copper phthalocyanine as an example. The model utilizes a

local environment descriptor for representation without explicitly characterizing the metal–organic

coordination. The nonlinear mapping capabilities of deep neural networks enable the model to effec-

tively capture higher-order many-body interactions. Furthermore, we utilized the Green–Kubo method

to calculate the thermal conductivity of copper phthalocyanine, revealing a value of 0.49 W m�1 K�1 at

300 K, consistent with experimental findings (0.39 W m�1 K�1). This result significantly surpasses previous

work with classical force fields. This work represents a significant advancement in demonstrating

that machine-learning force fields can effectively characterize interactions in metal–organic complex

systems and can significantly advance the development and discovery of organometallic thermoelectric

materials.

Introduction

The pursuit of efficient energy conversion technologies has inten-
sified due to escalating energy demands and growing environ-
mental concerns. Thermoelectric materials, which enable direct
conversion between thermal and electrical energies, have garnered
significant attention due to their potential applications in power
generation and refrigeration without moving parts or emissions.1

The efficiency of thermoelectric materials is quantified by the
dimensionless thermoelectric figure of merit, ZT = S2sT/k, where
S is the Seebeck coefficient, s is the electrical conductivity, T is
the absolute temperature, and k is the thermal conductivity.2

Achieving high ZT values requires a delicate balance between these

interdependent parameters, which poses a significant challenge in
thermoelectric material design. Organometallic complexes have
emerged as promising candidates in advancing thermoelectric
technology due to their unique electronic structures and tunable
properties.3 These complexes consist of metal atoms bonded to
organic ligands, creating a versatile platform for manipulating
charge carrier transport and phonon scattering at the molecular
level. The incorporation of heavy metal atoms can enhance the
Seebeck coefficient and reduce thermal conductivity through
increased phonon scattering, thereby improving the ZT value.4

Organometallic complexes typically have important charac-
teristics such as enhanced electrical conductivity due to delo-
calized p-electron systems and metal-induced charge transfer,
tunable electronic properties through modification of metal
centers or ligands, and inherently low thermal conductivity
from their organic components. The synergistic effects between
the metal and organic ligands facilitate improved charge carrier
mobility and reduced phonon transport, while their synthetic
versatility enables molecular-level engineering to optimize ther-
moelectric performance.5–10 Currently, organometallic complexes
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have very specific application systems in the thermoelectric field,
demonstrating their potential to enhance thermoelectric perfor-
mance through various mechanisms. For example, organometallic
polymers, such as poly(3-hexylthiophene) doped with organo-
metallic complexes, have shown increased electrical conductivity
and improved thermoelectric efficiency.11 Metal phthalocyanine
complexes, including copper phthalocyanines, have been investi-
gated for their thermoelectric properties due to their planar
conjugated structures and thermal stability, leading to enhanced
charge transport and Seebeck coefficients in thin-film devices.12

Additionally, organometallic complexes have been incorporated
into clathrates, coordination polymers, quantum dots, and skut-
terudites, all of which have contributed to the development of
thermoelectric materials with optimized ZT values.13–17

The complex and often large unit cells of organometallic
compounds, characterized by low symmetry and diverse bond-
ing environments, present significant challenges in accurately
predicting lattice thermal conductivity kL. Theoretical methods
play a crucial role in understanding and forecasting the ther-
mal transport properties of these materials. The two kinds of
most reliable approaches for calculating kL are solving the
phonon Boltzmann transport equation (BTE) combined with
density functional theory (DFT) calculations18–20 and molecular
dynamics simulation.21 For the method based on phonon BTE,
first-principles calculation provides detailed insights into pho-
non dispersion relations and lifetimes by calculating intera-
tomic force constants (IFCs). Studies have provided valuable
insights into the thermal transport mechanisms of arsenic–
phosphorus alloys, and IV–VI semiconductor compounds.22,23

However, the computational cost associated with calculating
IFCs for organometallic systems is substantial due to their
structural complexity.24 For MD-based methods, the wide usage
includes non-equilibrium molecular dynamics based on Fourier’s
law of heat conduction and equilibrium molecular dynamics
based on the Green–Kubo formalism.25–27 MD simulations inher-
ently include anharmonic effects and can handle large systems,
making them suitable for studying materials with significant
structural disorder or weak intermolecular interactions. Never-
theless, the accuracy of MD simulations heavily depends on
the choice of the force field. Previous studies have attempted to
model the copper phthalocyanine (CuPc) system using tailor-
made force fields based on a hybrid-COMPASS force field.28 While
their approach provided valuable insights into the structural
properties of CuPc, it exhibited significant limitations in accu-
rately predicting its thermal transport properties, with discrepan-
cies of an order of magnitude compared to experimental
observations. Due to the poor description of higher-order many-
body interactions, most of the classic force fields still lack the
precision needed for systems in which vibrational properties have
a strong influence on material properties. Developing accurate
potentials for organometallic compounds is challenging, limiting
the predictive power of MD in these systems.

In recent years, machine learning force fields (MLFFs) have
emerged as a promising solution to these challenges.29 MLFFs
leverage large datasets generated from high-level quantum
mechanical calculations to train models that can predict

potential energy surfaces with near-quantum accuracy.30

By learning directly from the data, MLFFs can capture complex
interactions and coordination environments without relying
on predefined functional forms or fixed parameters.31 Many
machine learning force field (MLFF) models have been devel-
oped, such as Gaussian approximation potential (GAP),32 ANI,33

deep potential (DP),34,35 moment tensor potential (MTP),36 neural
equivariant interatomic potential (NequIP),37 PhysNet,31 Torch-
MD-NET,38 NEP39,40 and so on. These MLFFs have emerged as
transformative approaches to molecular simulations, offering
near ab initio accuracy at a fraction of the computational cost.

Furthermore, there have been significant advances in com-
bining machine learning with thermal transport property
calculations.41 Baroni et al. investigated the viscosity and
thermal conductivity of liquid water via molecular dynamics
simulations based on the DP model.42,43 Zojer et al. parameter-
ized a machine-learned potential of the MTP model, achieving
near-DFT precision in modeling the structural, thermal, and
mechanical properties of metal–organic frameworks (MOFs).44

Cheng et al. explored the effects of high pressure on the lattice
dynamics and thermal transport properties of PbTe with the
NEP model, revealing that pressure-induced changes enhance
the lattice thermal conductivity by reducing phonon–phonon
scattering.45 These studies highlight the efficacy of MLFFs in
exploring thermal transport phenomena, which are critical for
the design of materials in thermoelectric applications and
thermal management technologies.

This study focuses on solving the problem of calculating the
lattice thermal conductivity of organometallic complex systems,
which in turn leads to a better prediction of the thermoelectric
properties. We choose copper phthalocyanine as an example
and deploy a set of generalized workflows for implementing
machine learning force field construction without relying on
preconceived notions of fixed chemical bonds or prior knowledge
of specific interactions, which are often inherent in classical force
fields. This innovation effectively overcomes the traditional chal-
lenges associated with characterizing metal–organic coordination
bonds in organometallic complexes. We propose utilizing an
active learning approach46–48 to construct a machine learning
force field (MLFF) for the CuPc system that achieves accuracy
comparable to DFT calculations. By accurately modeling the
complex interactions within CuPc, our MLFF enables reliable
molecular dynamics simulations for the prediction of thermal
transport properties and enables accurate calculations of ther-
mal conductivity in CuPc crystals. This advancement is critical
for understanding the thermophysical behavior of CuPc and
can also be used for other organometallic systems, which will
significantly impact the design and optimization of organic
thermoelectric materials.

Methods and implementation

In this section, the technical approach adopted in this study
will be introduced. We deploy a workflow from the initial
collection of the base dataset to the construction of the MLFF

Paper PCCP

Pu
bl

is
he

d 
on

 1
4 

M
ar

ch
 2

02
5.

 D
ow

nl
oa

de
d 

by
 T

si
ng

hu
a 

U
ni

ve
rs

ity
 o

n 
5/

12
/2

02
5 

10
:1

6:
22

 A
M

. 
View Article Online

https://doi.org/10.1039/d5cp00232j


This journal is © the Owner Societies 2025 Phys. Chem. Chem. Phys., 2025, 27, 8295–8304 |  8297

model and the subsequent calculation of the thermal trans-
port properties. By utilizing an active learning framework,
we systematically generate and organize datasets covering the
potential energy surface in the solid state of copper phthalo-
cyanine crystals.

Overall workflow

We employ a set of workflows capable of starting from the
construction of the force field of metal–organic molecular
complexes to the calculation of their thermal transport proper-
ties. The specific workflow is illustrated in Fig. 1 and can be
broadly categorized into three distinct phases. Initially, we
utilize an active learning framework to sample configurations
of the CuPc system, generating a dataset suitable for force field
development. This phase involves the systematic selection of
representative structures, which are subsequently labeled
using first-principles calculations performed with VASP.49 This
ensures that the dataset exhibits high accuracy, capturing the
essential features of the system’s potential energy landscape.
Following the establishment of a dataset with first-principles
accuracy, we employ deep neural networks (DNNs) to model
the potential energy surfaces of CuPc. This step is crucial for
constructing a robust mapping relationship between the struc-
tural configurations and the corresponding physical quantities,
such as energy, force, and virial. The DNN fitting process
leverages the rich dataset to enable precise predictions of
interatomic interactions. With the high-precision machine
learning force field in place, we proceed to compute the lattice
thermal conductivity of the CuPc system. This is accomplished
through equilibrium molecular dynamics simulations, com-
bined with the Green–Kubo formalism to extract thermal
transport properties. The resulting lattice thermal conductivity
values provide insights into the thermal behavior of the system
under investigation. A detailed description of each component
of this workflow will be elaborated upon in the following
sections.

Crystal information

Structurally, CuPc consists of a planar, cyclic tetrabenzopor-
phyrin framework with a central copper ion coordinated to the
nitrogen atoms of the phthalocyanine ligand. We collect our

initial dataset on the a and b forms of copper phthalocyanine,
with specific crystal structures and data presented in Fig. 2 and
Table 1. In its crystalline form, the a and b forms display
different packing arrangements. Crystal structures are collected
from experiments.50,51

Machine learning interatomic potential

The essential effect of machine learning interatomic potentials
is to establish a connection between structural configurations
and physical properties, enabling the efficient acquisition of a
substantial amount of data that closely approximates the
accuracy of first-principles calculations, while minimizing com-
putational time costs. In this work, we utilize the deep potential
framework,34,35 which is based on deep neural networks (DNNs),
to construct the force field model. Notably, this application
does not require any explicit description of chemical bonds,
which alleviates concerns regarding bond order when addres-
sing complex coordination systems. The deep potential model
has been extensively benchmarked not only against GAPs,
MTPs, ACE, and MACE but also against other state-of-the-
art models such as BPNN, SchNet, DimeNet++, GemNet-T,
GemNet-dT, NequIP, Allegro, and SCN. These benchmarks have
shown that DP performs well in both accuracy and speed.
In addition, research on traditional thermoelectric materials,
such as the work by Fan et al.,39 further supports that the DP
model offers higher accuracy and faster performance compared
to MTP and GAP models, particularly in the context of heat
transport properties.

In processing structural data, we employ the concept of
the local environment to define descriptors for each atom.
Specifically, the local environment of each atom is determined
by the atom itself and its neighboring atoms within a specified
truncation radius. Consequently, only those atoms within the
cutoff radius influence the force field acting on the centralFig. 1 Overall workflow.

Fig. 2 Molecular structure of copper phthalocyanines.

Table 1 Unit cell parameters of CuPcs

a-CuPC b-CuPc

a (Å) 12.9 19.4
b (Å) 3.8 4.8
c (Å) 12.1 14.6
a (deg) 96.2 90.0
b (deg) 90.6 120.9
g (deg) 90.3 90.0
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atom. This approach ensures that atomic interactions depend
on the arrangement of surrounding atoms in the local environ-
ment. This framework enhances the flexibility and accuracy of
modeling interatomic interactions in complex systems, such as
the copper phthalocyanine (CuPc) complex. In the framework
of deep potential, the construction of a descriptor involves
training a neural network to automatically determine the
coefficients of different many-body interaction terms.

Consider a system containing N atoms, where the coordinates
of the atoms are labeled as r ¼ r1; r2; . . . ; rNf g 2 R3N . The total
energy of the system Etotal is represented as the sum of the local
energies Ei of individual atoms:

Etotal ¼
X
i

Ei ¼ N D xi; xj
� �

j2nðiÞ

� �� �
;

where N is the fitting network and D is the descriptor. The input
of the descriptor is xi = {ri,zi}, while zi represents the chemical
species and n(i) denotes the neighbouring atoms of atom i within
the cutoff radius rc. The descriptor D of atom i is given by:

D ¼ 1

Nc
2
GTLðLÞTG

where L is the local environment matrix of atom i, the row of
which is given by:

Lj ¼ s rij
� �

;
s rij
� �

xij

rij
;
s rij
� �

yij

rij
;
s rij
� �

zij

rij

� 	

where rij is the relative distance between atom i and atom j. The
s(r) is the smooth version of the cutoff function, which guarantees
that only contributions within distance rc of atom i are considered
and makes the second-order derivatives at the truncation still
continuous.

The embedding matrix G is given by:

G ¼ N embedding s rij
� �� �

where N embedding is a three-layer MLP, the parameters of which
are determined through training. The descriptor D preserves
the translational, rotational, and permutational symmetries
and is passed to another three-layer MLP to evaluate the
potential energy.

After getting the potential energy E, the atomic force Fi and
the virial tensor X = Xab can be derived.

Fi;a ¼ �
@E

@ri;a
;

Xab ¼ �
X
g

� @E
@hga

hgb;

where a represents the ath component of ri and Fi. hab is the bth
component of the ath basis vector of the simulation region. The
optimization of parameters within the model is achieved

through the minimization of a loss function, as illustrated in
the following equation:

L ¼ wE Epred � Eref
� �2þwF

X
i

Fpred
i � F ref

i




 


2

þ wX

X
a;b

Xpred
ab � Xref

ab

� �2

where wE, wF and wX are weight coefficients that balance the
contributions of different physical quantities. It is noteworthy
that although the descriptors primarily rely on information
from two-body and three-body interactions, the nonlinear
mapping capabilities of deep neural networks enable the model
to effectively capture higher-order many-body interactions.
This allows the entire force field model to cover high-order
interactions as comprehensively as possible. The hidden layers
of the network are capable of learning complex relationships
among the input features, which is difficult to achieve with
traditional classical force fields.

Active learning framework

The generation of a comprehensive dataset is crucial for con-
structing an effective force field. It must balance sufficient data
coverage of relevant phase space with minimal redundancy,
as excessive redundancy can degrade model performance and
increase computational costs. For the CuPc complex, high-
quality and diverse datasets are essential to capture complex
interactions and accurately represent configurational space,
facilitating effective machine learning force field (MLFF)
predictions.

The active learning framework serves as a strategic approach
to efficiently generate and select informative data. It is an
iterative process that efficiently explores the vast configurational
space by selectively sampling the most informative structures,
thereby ensuring the robustness and accuracy of the model.

As shown in Fig. 3, the active learning process was iteratively
executed through the following steps:

Fig. 3 Active learning iteration steps.
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(1) Model training: four DNNs are trained using the current
dataset with different initial weights, optimizing the neural
network parameters to minimize the loss function defined by
discrepancies between predicted and reference energies and
forces.

(2) Candidate generation: new configurations are generated
using molecular dynamics simulations. Lots of trajectories are
performed under the current potential functions to explore new
regions of the PES.

(3) Uncertainty evaluation: the ensemble of force field
models predicts energies and forces for the candidate configu-
rations. The max standard deviation (s) among these predic-
tions quantifies the uncertainty for each configuration.

s ¼ max
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Fm;i � Fm;i

� 


 

2� 
q� �

where Fm,i denotes the force on atom i predicted by model m.
h. . .i represents the average of model predictions.

(4) Configuration selection: configurations satisfying smin o
s o smax are selected for inclusion in the training dataset. This
ensures that we focus on regions where the model’s uncertainty
was informative but avoid regions likely associated with un-
physical structures.

(5) High-fidelity calculations: selected configurations
undergo density functional theory (DFT) calculations to obtain
accurate reference energy, force and virial data, providing high-
quality data for training.

(6) Dataset augmentation: The new data are incorporated
into the training set, and the DNNs are retrained to include this
additional information.

(7) Convergence assessment: the model’s performance is
evaluated against predefined criteria, such as root mean square
error (RMSE) thresholds on a validation set. If the model meets
the convergence criteria, the active learning loop will be termi-
nated; otherwise, it will repeat from step 1.

Uncertainty evaluation is of importance in guiding the active
learning process. We utilize an ensemble of neural network
models trained on the same dataset but with different initial
weights to estimate predictive uncertainty. The variance among
the ensemble’s predictions serves as an indicator of uncertainty
for each configuration. The standard deviation of the predicted
energies and forces is calculated across the ensemble models.
This standard deviation provides a quantitative measure of
the model’s uncertainty for that configuration. A very small
standard deviation indicates that the ensemble models agree
closely in their predictions, suggesting that this region of the
PES has been sufficiently explored and the DNN is confident in
its predictions. A higher standard deviation represents regions
that are not fully described or are more complex, indicating
that additional data in these areas could improve the model’s
performance. However, if the standard deviation is excessively
high, it may imply that the configuration corresponds to a
physically incorrect or unstable structure, possibly due to
numerical instabilities or artifacts in the candidate generation
process.

Building on the above discussion, it is instructive to com-
pare this ensemble-based approach to uncertainty quantifica-
tion with the Bayesian approach employed in VASP’s active
learning force field. Bayesian approaches, such as Gaussian
process regression (GPR), estimate uncertainty based on the
posterior distribution of model parameters. These methods
provide a probabilistic framework for uncertainty quantifica-
tion, which is beneficial when detailed uncertainty analysis is
required. They give not only a point estimate but also an
associated variance, reflecting the model’s confidence in its
predictions. This approach is particularly advantageous for
small datasets or situations where the relationship between
the input and output is complex. In contrast, our method uses
an ensemble of models to estimate uncertainty by comparing
their predictions. This approach does not rely on a probabilistic
framework and instead uses the variation in model outputs (forces
or energies) to quantify uncertainty. The advantage of this method
lies in its computational efficiency, as it avoids the heavy computa-
tional cost of calculating posterior distributions, making it well-
suited for large systems or when computational resources are
limited. Moreover, this approach is highly flexible and does not
require assumptions about the prior distribution, which is parti-
cularly useful when prior knowledge is scarce.

Compared to Bayesian methods, the ensemble-based approach
offers less detailed probabilistic uncertainty estimates, particu-
larly in cases with sparse data or complex dependencies, and may
overestimate uncertainty in regions where models agree closely.
However, our ensemble-based approach is efficient, scalable, and
flexible, and thus particularly well suited for high-throughput
simulations in complex systems where specifying a priori distri-
butions is impractical. It avoids intensive operations such as
covariance matrix inversion. This approach provides a practical
alternative to Bayesian error estimation in cases where computa-
tional efficiency is critical or prior information is limited.

When selecting configurations based on uncertainty, we
consider both a lower and an upper bound on the standard
deviation. Lower threshold (smin), excluding configurations
with very low uncertainty (s o smin), prevents the addition of
data from regions where the MLFF is already well-trained. The
upper threshold (smax) excludes configurations with exceed-
ingly high uncertainty, which could correspond to unphysical
structures or numerical errors. To further ensure that selected
configurations represented physically meaningful states of
the CuPc complex, additional filters based on structural para-
meters are applied. Configurations exhibiting unrealistic bond
lengths, angles, or atomic overlaps are excluded, even if they
fall within the uncertainty range.

Furthermore, the smin and smax values are not fixed but
dynamically adjusted based on the distribution of uncertainties
in each iteration. This adaptive approach allows the selection
criteria to evolve with the model’s improving accuracy.
A balance is maintained between exploring new regions of the
PES (exploration) and refining the model’s accuracy in already
sampled regions (exploitation).

The idea of excluding configurations with excessively high
uncertainty addresses the issue of potentially unphysical
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configurations that could arise in the active learning process,
which can adversely affect the training of the model. In particular,
large error estimates tend to occur in the early stages of active
learning or when new structures are collected in regions of new
temperature ranges. During these stages, the force field is not yet
fully trained to describe the current potential energy surface,
leading to the generation of unreasonable structures. For example,
some atoms may be placed too close to each other, or other atoms
may be positioned far from the system. If these structures were
included in the dataset, they would degrade the predictive accuracy
of the force field and introduce more unphysical configurations,
exacerbating the problem. The potentials will exhibit greater
variability in energy and force predictions, and the models struggle
to generalize well to configurations that are outside the training
set’s scope. The inclusion of uncertain configurations leads to
overfitting in certain regions of the configuration space, reducing
the overall robustness of the model.

Thermal conductivity calculation

In this study, we employed equilibrium molecular dynamics
(EMD) simulations in conjunction with the Green–Kubo
formalism to calculate the thermal conductivity of the material
under investigation. The Green–Kubo approach provides a
rigorous theoretical framework that connects microscopic fluc-
tuations in a system at thermal equilibrium to macroscopic
transport coefficients, such as thermal conductivity.25,26 By analyzing
the time correlations of heat flux within the system, we can
derive the thermal conductivity without imposing a temperature
gradient, which is advantageous for simulating homogeneous
systems and avoiding non-equilibrium effects.

The thermal conductivity tensor k is given by the Green–
Kubo relation:

k ¼ 1

kBT2

ð1
0

Jð0Þ � JðtÞh idt;

where kB is the Boltzmann constant, T is the absolute tempera-
ture and J(t) is the heat current vector at time t. J(0)�J(t) denotes
the equilibrium ensemble average of the outer product of the
heat flux at times 0 and t. The integral over time extends to
infinity, but in practice, it is truncated at a time where the heat
current autocorrelation function (HCACF) decays sufficiently.
The microscopic heat flux J(t) is a vector quantity representing
the flow of energy through the system at a given time. For
classical systems, the heat flux can be expressed as:

JðtÞ ¼ 1

V

X
i

eivi �
X
i

ri � F i

" #
;

where V is the volume of the simulation cell. ei is the site energy
of atom i, including kinetic and potential energy contributions.
vi, ri and Fi are the velocity, position vector and atomic force of
atom i.

The molecular dynamics simulations are performed using
the LAMMPS software package.52 Periodic boundary conditions
are applied in all three spatial dimensions to mimic an infinite
bulk system and eliminate surface effects. Prior to data

collection, the system is equilibrated under the NVT ensemble
using a Nosé–Hoover thermostat. The equilibration phase
ensures that the system reaches thermal equilibrium, with stable
thermodynamic quantities such as temperature, pressure, and
total energy. Production runs were conducted under the NVE
ensemble to simulate the microcanonical ensemble. This setup
is essential because the Green–Kubo formalism requires natural
fluctuations of the system without external perturbations from
thermostats or barostats. The production runs are sufficiently
long, typically several nanoseconds, to ensure adequate sampling
of heat flux fluctuations. A small timestep in the femtosecond
range is used to accurately integrate the equations of motion
and resolve atomic interactions.

Results and discussion
Dataset

In this work, we employ an active learning approach to generate
molecular structures, followed by single-point calculations using
VASP to derive first-principles energy, force, and virial data corres-
ponding to these structures. DFT calculations are performed using
the Vienna ab initio simulation package (VASP) with the projector
augmented wave (PAW) method and the Perdew–Burke–Ernzerhof
(PBE) exchange–correlation functional.53,54 The PBE functional is
augmented with the D3 van der Waals correction to accurately
account for dispersion interactions. We set an energy cutoff of
800 eV for the PAW, a 2 � 6 � 3 k-point mesh, and a threshold of
10�5 eV for the electronic self-consistent loop. Detailed steps have
already been described in the previous Methods section. This
process is facilitated by the DPGEN55 program.

Initially, we generate a preliminary dataset, from which we
train an initial force field. This is iteratively expanded through
molecular dynamics sampling. The initial dataset consists
of structures selected from short-time ab initio molecular
dynamics (AIMD) simulations conducted on a-CuPc. Subse-
quently, we conduct molecular dynamics simulations on dif-
ferent perturbed structures of a-CuPc and b-CuPc under the
NPT ensemble across 3 temperature intervals ([50 K,100 K,
200 K], [300 K,400 K,500 K], and [600 K,700 K,800 K]) and five
pressure levels [1 bar, 5 bar, 10 bar, 100 bar, and 1000 bar] for
various configurations, resulting in a total of 5345 distinct
structures. The distribution of these structures by temperature
is presented in Table 2. Notably, the higher temperature
regions yield a greater number of collected structures during
the active learning iterations. When sampling in different
temperature zones, we will keep selecting new structures based
on uncertainty evaluation until the model accuracy converges.
The detailed setting of thresholds is shown in ESI† Table S1.
More structures collected in the temperature zone reflect the
broader energy coverage that allows the exploration of a more
extensive phase space.

Machine learning force field training

Utilizing the obtained dataset, we construct an efficient
machine learning force field model based on high-accuracy
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energy, force, and virial data extracted from first-principles
calculations (DFT). The neural network is trained using the
Adam optimization algorithm. We randomly select 80% of the
dataset as the training set and reserve the remaining 20% for
testing. In the setting of the training parameters, the cutoff
radius is 6.50 Å. The embedding network has three layers with
25, 50, and 100 neurons, respectively, whereas the fitting net-
work has three layers with 240 neurons. The loss function is
optimized using the Adam stochastic gradient descent method.
As shown in Fig. 4, we compare the force field accuracy before
and after employing an active learning framework. Refining
the force field through the active learning framework results in
an order-of-magnitude improvement in accuracy on the same
test set.

In the test set, the root mean square error (RMSE) for energy
reaches 0.55 meV per atom, the RMSE for force is 57.9 meV Å�1,
and the RMSE for virial data per atom is 4.1 meV per atom.
These figures indicate a high level of precision, with the model
exhibiting similar performance across both the training and
test sets. This close alignment further demonstrates that the
dataset generated based on the active learning framework has a

good coverage of the potential energy surface and that the deep
potential model adequately obtains the required information
from the dataset.

However, further assessments are necessary to evaluate the
model’s physical performance, particularly whether the trained
force field can yield results comparable to those obtained from
DFT calculations. To test this, we compute the radial distri-
bution function (RDF) for both the a and b phases of CuPc at
300 K using both the VASP and the trained model. The radial
distribution function (RDF) g(r) provides insights into the
spatial distribution of particles within a system. As shown in
Fig. 5, the RDF results from our force field model closely align
with those from DFT calculations, reinforcing the reliability
and accuracy of the trained force field model.

Convergence test

In this study, we employ equilibrium molecular dynamics
(EMD) in conjunction with the Green–Kubo equation to com-
pute the thermal conductivity of CuPc materials. While the
EMD method does not strictly require the simulation cell size
to exceed the phonon mean free path, size effects must be
considered, necessitating a convergence test to mitigate their
impact on the results. We conduct tests using various cell sizes,
including 1 � 1 � 1, 2 � 2 � 2, . . . up to 10 � 10 � 10.

During the NVE simulations, we monitor fluctuations in
pressure and temperature. Notably, the 1 � 1 � 1 cell exhibits
substantial variations in physical parameters throughout the
simulation, whereas larger cell sizes lead to increased stability,
with convergence achieved at around the 5 � 5 � 5 cell size.
Furthermore, despite our training set consisting solely of the
unit cell and small supercell data, the trained force field model
accurately captures variations in physical quantities as the cell
size changes. This capability is attributed to the treatment of
local environments within the neural network model.

Additionally, we perform convergence testing on the calculated
thermal conductivity. For a given cell, we independently run
50 trajectories at 300 K to obtain ensemble averages, as shown

Table 2 Dataset distribution by temperature

Temperature (K)

Structure counts

a-CuPc b-CuPc

[50,100,200] 226 489
[300,400,500] 1042 743
[600,700,800] 1411 1434

Fig. 4 (a) Energy, (b) force, and (c) virial data per atom before as calcu-
lated from the neural network before active learning compared with DFT
calculations in training and test sets. (d) Energy, (e) force, and (f) virial data
per atom are calculated from the neural network after active learning.

Fig. 5 Comparison of the radial distribution functions of b-CuPc (300 K)
from ab initio (continuous blue line) and deep potential (dashed orange
line) simulations, respectively.
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in Fig. 6. The results indicate that convergence is reached with the
5 � 5 � 5 cell, aligning with the trends observed in the earlier
physical parameter variations.

Thermal conductivity calculation

Following validation of the force field and convergence testing,
we analyze the thermal transport properties of CuPc. Using a
5 � 5 � 5 cell, we execute fifty independent NVE simulation
trajectories at the target temperature, employing the LAMMPS
program. The heat flow computation module has been adapted
from Tisi’s work, correcting previous errors arising from
LAMMPS’ assumption of symmetry in atomic stress.42,56

Based on the heat flow data, we employ the Green–Kubo
equation to derive the final thermal conductivity results. Taking
the 300 K case as an example, the heat flow autocorrelation
function is presented in Fig. 7, yielding a thermal conductivity
of 0.49 W m�1 K�1. In contrast, previous experimental results
reported a value of 0.39 W m�1 K�1, indicating an improved
accuracy compared to the earlier hybrid-COMPASS-derived

value of 1.2 W m�1 K�1 (Table 3). Given that our CuPc model
is a perfect crystal in the molecular dynamics simulation, this
overestimation of the calculated value is anticipated.

We also compute the thermal conductivity of CuPc across
temperatures ranging from 60 K to 360 K, generating a tem-
perature variation curve as shown in Fig. 8. At lower tempera-
tures, diminished atomic random motion reduces phonon
scattering, leading to increased thermal conductivity. The
observed relationship of thermal conductivity with tempera-
ture, characterized by BT�0.6, is consistent with the principles
governing thermal transport in crystalline materials. In general,
thermal conductivity arises from the collective motion of pho-
nons, which are quantized lattice vibrations that carry thermal
energy. At lower temperatures, phonon scattering is minimized,
leading to higher thermal conductivity as phonons can propa-
gate more freely through the crystal lattice. However, as tem-
perature increases, several mechanisms contribute to increased
phonon scattering. These include anharmonic interactions between
phonons and the scattering caused by defects, grain boundaries,
and other thermal excitations. Specifically, it implies that the
phonon mean free path decreases with an increase in tempera-
ture, resulting in reduced thermal conductivity.

Conclusions

In conclusion, this research successfully demonstrates the effi-
cacy of an active learning framework in generating a diverse
dataset for training a machine learning force field tailored
to CuPc. The nonlinear mapping capabilities of deep neural
networks enable the model to effectively capture higher-order
many-body interactions. The model utilizes a local environ-
ment matrix for representation without explicitly characterizing

Fig. 6 (a) Temperature and (b) pressure fluctuations under NVE simula-
tions for different sized crystal cells, (c) trend of thermal conductivity as a
function of unit cell size. The data illustrate the convergence of thermal
conductivity values with an increase in unit cell dimensions.

Fig. 7 Heat current autocorrelation function.

Table 3 Thermal conductivities from theoretical calculation and
experiment

Thermal
conductivity

Experiment57 (W
m�1 K�1)

Hybrid-compass28 (W
m�1 K�1)

DNN (W m�1

K�1)

b-CuPc 0.39 1.1 � 0.2 0.499 � 0.008

Fig. 8 Trend of thermal conductivity as a function of temperature.
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the metal–organic coordination. Nevertheless, the trained model
exhibited impressive accuracy, as indicated by low RMSE values
(energy: 0.55 meV per atom, force: 57.9 meV Å�1, and virial data
per atom: 4.1 meV per atom) and consistency with DFT results,
confirming its potential for practical applications in predicting
molecular interactions. Notably, our calculations reveal a thermal
conductivity of 0.49 W m�1 K�1 at 300 K for the CuPc system,
aligning well with experimental findings (0.39 W m�1 K�1).
In addition, our analysis of thermal conductivity elucidates the
relationship between the temperature and thermal conductivity in
CuPc. This work serves as an essential progress in demonstrating
that the introduction of machine-learning force fields can effec-
tively characterize the interactions of metal–organic complex
systems and can significantly advance the development and
discovery of organometallic thermoelectric materials.
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