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ABSTRACT: We present a Hierarchical Equations of Motion
(HEOM) approach in the Matrix Product State (MPS) formalism to
simulate carrier transport in molecular aggregates described by an
electron—phonon Hamiltonian with bosonic dissipation. Transport
properties are evaluated through time-dependent population analysis

and mobility calculations. The method’s validity is rigorously w
established through benchmarking against conventional HEOM.

Comparative analysis with Thermo-Field Dynamics combined with
MPS (TED + MPS) reveals fundamental similarities and differences in

Fock space

b

State-vector space

their effective Hamiltonians and demonstrates the superior accuracy

and computational efficiency of our HEOM + MPS framework. For single-electron systems, we introduce state-vector space
configurations that enhance performance beyond traditional Fock space approaches. Results confirm that our method provides a
robust, nearly exact, and efficient numerical quantum dynamic approach for carrier transport in dissipative bosonic environments.

1. INTRODUCTION

Transport properties present central issues for molecular
functional materials," > such as organic solar cells, ™
optoelectronic materials,”> and molecular electronics/devi-
ces.” " Carrier transport involves electron scattering and
relaxation processes within the vibrational environment. While
band-like pictures''~'* describe charge transport under weak
electron—phonon coupling, most organic semiconductors
exhibit significant electron—phonon coupling'*~"" due to the
flexible backbone structure of organic molecules.”’ Crucially,
electron—phonon coupling constitutes a common problem
that poses substantial challenges.

A number of numerical methods have been developed to
address such problems, includin§ mean-field Ehrenfest
dynamics'®*" and surface hopping,”** which treat nuclear
motion classically. Quantum nuclear effects were first predicted
theoretically”*™>° and later confirmed experimentally through
nonlinear current—voltage characteristics and isotope ef-
fects.””~*° While time-dependent density matrix renormaliza-
tion group’ ~*° and multilayer multiconfiguration time-
dependent Hartree®”*® methods can incorporate quantum
nuclear effects in electron dynamics, they face limitations and
struggle with discretized environmental modes in large
systems,”” and both methods encounter numerical challenges
from orbital ordering problems.””*>**~* Theoretical ap-
proaches like nonequilibrium Green’s function and master
equation methods**™** mainly rely on perturbation theory for
many-body effects. These collective limitations underscore the
need for a more robust computational technique capable of
simultaneously handling environments and many-body inter-
actions.

© 2025 American Chemical Society
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Quantum dynamics for open quantum systems, where bath
degrees of freedom are traced, provide an effective framework
for addressing the problems. To accurately model carrier
transport dynamics, non-Markovian memory effects must be
incorporated, necessitating approaches beyond Lindblad
equations®”**~>* and Redfield equations.”>** Several methods
based on the reduced density matrix have been developed to
capture non-Markovian dynamics in carrier transport, includ-
ing the pseudo mode method,”>® the quasi-adiabatic path
integral,””>® and hierarchical equations of motion
(HEOM).”%* If based on the tensor network state
ansatz,"%" which was first proposed by Shi et al,* rather
than density matrices or auxiliary density operators (ADOs),
the computational cost can be significantly reduced. Notably,
tensor network state formalisms have been successfully
integrated with diverse open quantum system method-
ologies,55’63’67_71 including the matrix product state (MPS)
formalism.

Building on our previous development of GPU-accelerated
algorithms’> and the general autoconstruction method” for
matrix product operators (MPO), we implement HEOM
within an MPS formalism using twin space to model charge
transport in molecular aggregates with dissipative bosonic
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environments. For single-electron systems, we develop state-
vector space MPS configurations that surpass conventional
Fock space approaches in both accuracy and efficiency. We
further benchmark our HEOM + MPS framework against
Thermo-Field Dynamics combined with MPS (TFD +
MPS).>¥*>7#77¢ Although both methods employ density
matrices at finite temperature under initially disentangled
system-bath conditions, they originate from fundamentally
different effective Hamiltonians and theoretical frameworks:
TFD + MPS relies on the discretization of the full quantum
space, while HEOM + MPS is based on open quantum
dynamics.

2. THEORETICAL MODEL AND METHODOLOGICAL
APPROACH

1. HEOM for Different Model Hamiltonians. We
consider model Hamiltonians partitioned into system, bath,
and system—bath coupling components:

H=Hg+Hy+V=H,+V (1)

The system—bath interaction assumes a sum-of-products
form:V = Y SB, where {S} and {B} denote the system and

collective bath operators, respectively. The collective bath
operators can also be decomposed:

B = Zg,q
j ()

with g; representing the coupling strength and g; the normal
mode coordinate. We assume the initial conditions at t = 0
such that baths remain thermally equilibrated at temperature
T, obey Gaussian statistical properties,””®* and are disen-
tangled from the system. The bath’s effect on system dynamics
is encoded in bosonic correlation functions:

i

CcPoe(t) = Tr{é(t)BpB
=) (@) do
= Z r[ e nt

1
1 —e P (3)

fBose —

where ] is the spectral density function and f°° is the
partition function for the Bose—Einstein distribution. Using
Padé or Matsubara decomposition (see Section S1), we expand
the bath correlation function as an exponential series, with k
being the index of expansion terms. Applying a series of
auxiliary influence functionals and their time derivatives can
yield the HEOM equation.””°"%*

The spin-boson model represents the simplest yet most
widely adopted benchmark for quantum dynamics.”>°%%"” Its
Hamiltonian components (eq 1) are explicitly:

Hg = €0, + Ac,

2
b 1
HB = Z {? + Za)kzqkz]

k

> wk(b,:“bk + %]

k

‘k +
V=0) ¢q =oc (b +by)
; kg ; /—Zwk k k (4)

where ¢’s denote Pauli matrices, € is the energy gap between
the two states and A is the coupling. w, p;, g are the
frequency, momentum, and coordinate of the kth mode,
respectively. ¢, represents the coupling strength and can be
described by the following spectral density function, with
by, b, the phonon creation and annihilation operators. We
employ the Debye—Drude spectral density function, with A
being the reorganization energy and w,. the cutoff frequency.

J@) =2 % b — )

P (s)
Awa,
J(@) = —5—
o’ + w (6)
The corresponding HEOM equation®"*>** is

f = —{iLs +2 Wk]ﬂn - 1[6 an;}
k k

- iz ”k(ﬂkﬁzﬁn; - ﬂk*Pnk—Uz)
k (7)

Here, 7, y, correspond to eq 3 parameters, Lg is the
Liouville superoperator Lgp = [Hg p], and p,, are the so-called
auxiliary density operators (ADOs). The multi-index n =
{nyn,, -+, ny ---} with non-negative integer elements tracks the
hierarchy depth, while n is an abbreviation for n+ 1, with 1, =
{0,0, ---,0,1,,0, -}, and n, is the kth element of n. The other
details are given in Section 2.3.

The Fenna—Matthews—Olson (FMO) complex has at-
tracted significant interest as a key photosynthetic compo-
nent.”® Its quantum dynamics are described by a Frenkel—
Holstein Hamiltonian with exciton—phonon coupling:

Z t] 4 1
Hy = Z Z wkbi_li—bik
i=1 k

N
V= Z Z gka)k(biz +by)a'a, ®
i=1 k 8

where a;* (a;) is the creation (annihilation) operator for the
ith local excited state, J; denotes the excitation energy (i = j) or
Coulomb coupling (i #j), bj and by, are phonon creation and
annihilation operators of the kth mode with frequency w; and
electron—phonon coupling

%

& =
2a)k3

Using the Debye—Drude spectral density (eq 7), the
corresponding HEOM equation is

[ 3 ] z [ > ]
- iz Z ”ik(’]kai+aip,,
i k

* +
-, p,-a a)
ik (9)
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This extends eq 8, with an additional index i meaning the
exciton site and o, replaced by 4. a,.

A distinct application is the Peierls model, featuring
intermolecular vibrational coupling:

Hg = Z €a a; + ]Z (ai+ai+l + ‘1;1“;‘)
i i

Hg = z z a)kbi-ltbik
i k

‘/Peierls = z z gka)k(bi-l: + bik)(ai+ai+l + ai-:—lai)
ik (10)

considering only the nearest-neighbor couplings. The
HEOM equation follows eq 10 except with a;a, replaced by
a’a,,, + ala,

2.2. HEOM in Twin Space. Equations 7 and 9
demonstrate that the HEOM formalism is inherently non-
perturbative and non-Markovian. While only the zeroth-tier
reduced density operator p,(t) contains the physically relevant
system dynamics, higher-tier ADOs encode non-Markovian
memory effects.’”” The coupled ADO hierarchy structure
introduces significant computational complexity,®’ and density
matrix representations are not well-suited for the formalism
involving time evolution of wave functions under effective
Hamiltonians. These can make it more complicated than wave
function-based methods, the latter based on Schrédinger-type
equations. Crucially, these limitations motivate a trans-
formation of eqs 7 and 8 into Schrédinger-like equations to
bypass both ADOs coupling and density matrix constraints.

The presence of operators acting right of ADOs in eqs 7 and
9 necessitates operator reordering to derive a Schrodinger-like
equation. Following Borrelli's twin space formalism,” we
implement this by extending the Liouville space: for a physical
system with orthonormal basis {lm)} in Hilbert space H, we
introduce a dual basis {lfnl} in twin space H. Then, the identity
vector of the space H @ H is defined as

Iy = ) lmrn) -

This enables vectorization of any density matrix through the
following mapping:

plIy =Y C,In)(mlIy = Y C,,In)lin)
nm nm (12)

We employ an occupation number representation for
multisite electron/spin problems. The identity vector (eq 11)
and transformed operators become:

Iy = [ X tmm)=>" T tm)
i m; {m} i

(13)
apll) = a’lp)
patll) = patil) = a*pll) = a7lp)
apll) = clp)
pall) = pGll) = gplI) = Glp) (14)
lp) = Z leﬁl--AmNﬁNH Imfi;)
{mi;} i (15)

Critically, eq 14 positions all operators left of ADOs within
the space H ® H, distinct from the original Hilbert space. For
single-electron systems, a;*, a; represent hard-core boson or
spin operators satisfying commutation relation with p. This
differs from Lindblad-based approaches®”>® (see Section S2 for
full derivation). Cases requiring explicit antisymmetry proper-
ties for many-electron systems will be addressed in subsequent
work. The vectorized state lp) in eq 15 exhibits a natural MPS
structure,”® enabling direct compatibility with MPS calcu-
lations.

Applying the transformation in eq 14to eqs 7 and 9 yields

b)) = _[iLs +2 "ki’k]'m —iY (0= &)lp,.)
k k

— i) mne = na)p,-)
k

N N
b)) = —[iLS + ) nik}/ik]lpn) — i) Y (afa, - a*a)
i k i k

N
lp”JE> - iz Z ”ik(’?kai+“i - Wk*5i+&i)|ﬂnlz>
i k

(16)

Note that in eq 3, 7, has the dimension of energy squared
(since the spectral density function has the dimension), while
7 maintains energy/frequency dimension. Therefore, {p,}
have different dimensions and we introduce a scaling

parameter [ ], (Inklnknk!)_l/ ?, transforming eq 16 into:

p) = —[iLS + nkyk]lpn>

k
_iz (o, — @)mlpmﬁ)
k
=i Jm /I (e = nfe)lp,.)
k

3,) = —[iLs + 2 nik%k}'m
i k

N
_iz Z (ai+ai - ﬁi+ai) (ny + 1)|’7k| lpn,f)
- iz Z \ nik/lnkl (ﬂkafrai - Uk*ﬁi-'—ﬁi)lpn,;)

In eq 17, the terms involving ny, /m, /m + 1 exhibit
formal equivalence to bosonic creation and annihilation
operators. To further simplify the structure, we introduce a
virtual bosonic space:

In) = Inyny-n ) = (b)"(b5)"---(b))"™100---0) (18)

governed by virtual operators satisfying standard phonon
bosonic algebra:

bilny = n, + 1ln + 1,)
bz'”) = \/Eln - 11) (19)

This motivates replacing hierarchical n-dependent terms
with phonon operators. We introduce a unified state

https://doi.org/10.1021/acs.jctc.5c01385
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combining space Ip,(t)) (eq 16) and virtual bosonic space In)
(eq 18):

I¥(t))

2 ,() @ In)

= 2 C:t‘ml-»-mNmN(t)lml’hl' i) @ In)

n

KOUL RIS,

(20)
Applying the FMO HEOM equation (eq 9) as an example,
the time evolution becomes

d d
ial\P(t)) = IE; . (t)) ® In)

N
=i z —[iLS + Z Z nik}/ik]lpn)
n i k
N
_iz Z \/(“ik + 1)|77k| (“i+“i - 5i+ﬁi)|Pnl_;>
ik

N
- iz 2 &, nik/lnkl (Ukai+“
ik

0.4 a)lp, )} ® In)

=y {HS — Hy— i) pbibylp) ® In)
n ik

+z N (ai+aibik - bik&i+&i)|pn:> ® |",-Z>
ik

1,
1
+ z —(ﬂka;raibiz - ﬂk*
ik 4/ |77k|

={Hg — Hg - iz Vikbizbik + z W(“iJruibik - byd'a)
ik ik
+2

1
- (Wk“iJr“ibiz
ik 4/ |77k|
(21)

Therefore, this reformulates HEOM into a Schrodinger-like
equation with an effective Hamiltonian, and model-specific
realizations are as follows:

bizai+ai)|pn1;> ® )}

c b @) (1))

d
i—IP(t)) = HglWP(t
() = H¥()) -
Hy = Hy — Hy — i), rbib + 2, Wl (b — b,
k k
+ Z (nka b - nble)
Vi (23)
for the spin-boson model;
Hes = Hg — Hg — iz Tybicbi
ik
+ . il (afaby, — beata)
ik

1 .
+ Z ?(nka:raib:,: - nk*bi_l'c_ai+ai)
ik M (24)

for FMO, and;

o . +
H.s = Hg — Hg — ’Z Yabi by
ik
+ Z N, |’7k| [(“i+‘1i+1 + ai:lai)bik
ik

~t~ ~+ ~
- ik(ai 4t “i+1ai)]

1
+ r]k(a a, + a’a)bf
ik l']kl
- ’7k bi(ata,, + ala)l (25)

for the Peierls model.
With these effective Hamiltonians established, we compute
population dynamics via

(o(t)) = Tr(pa,(t)) = (LlaI¥(t))
(N()) = Tr(pN(t)) = (Ila; al¥(t)) (26)

where IIp) = [[, X Im#) & In = 0) sets the system in a

maximally entangled state and virtual phonons in their ground
state. Section 2.3 details the MPS implementation of this time
evolution.

2.3. HEOM in MPS Format. 2.3.1. MPS and MPO. The
MPS ansatz provides a natural framework for solving the time-
dependent Schrodinger-like equation (eq 22) governed by the
effective Hamiltonians in eqs 23—25 . Within the MPS
formalism,*>°*®" any quantum state is represented as a chain

product of matrices:
A[MIZA[2]3, -+-Aln]Y_ loyoy-+a,)

|“P>= Z n

{a},{o} (27)

where A[i] denotes matrices for the ith physical bond o,
with the ith virtual bond g; connecting adjacent matrices as
shown in Figure la. The direct structural correspondence
between eqs 20 and 27 demonstrates the inherent compati-
bility of MPS with our twin space formulation.

(a)
a2

g1 Opn
a T ay an 2 Qn-1
an 2\ ap-1

Gn 1 O-n

Figure 1. Schematic diagram of (a) MPS and (b) MPO. {o, ¢’} are
physical bonds and {a} are virtual bonds.

Similarly, quantum operators are represented as Matrix
Product Operators (MPOs) through a tensor network
structure:

) Y WHETWRIS - Wnl% o0, -,)
{a},{c},{0"}

(o0, (28)

where W[i] denotes operator matrices for the i-th physical
bond 6, 6", with the ith virtual bond g; connecting adjacent
sites, as shown in Figure 1b.

The power of tensor network methods lies in their ability to
near-exactly describe many-body entanglement through
controlled truncation of small singular values across virtual
bonds, thereby reducing computat10nal scaling from exponen-
tial to polynomial scaling.®

https://doi.org/10.1021/acs.jctc.5c01385
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2.3.2. Time Evolution Algorithm. To solve the time-
dependent Schrodinger-like equation, we employ the time-
dependent variational principle for time evolution.””*>** The
Dirac—Frenkel time-dependent variational principle is ex-
pressed as

0 N
oPli— — H¥) =0
O 1) (9)
This variational procedure projects the wave function’s time
derivative onto the MPS manifold, constrained by the fixed
virtual bond dimension. Using the manifold’s projection
operator, the equation becomes

a¥(t)) A A
— = —iPHI¥Y(t
ot HI¥(e)) (30)
P=YB1:i-11®1®BPli + 1: 1]
i=1
Z 1:i] @ Pli + 1: n]
i=1 (31)
where P is the projection operator’ %%
P1: ] = )] la/[1: i1)S[1: i],7} (a1 i]l
aa) (32)

Pli + 1:n] = ) la/li + 1: n])S[i + 1: ]} (afi + 1: al
(53)

=) lo)l
a (34)
Pl1: 0] =Pln+ 1:n] =1 (35)

Here, S denotes the overlap matrix when the renormalized
bases are nonorthogonal.”” Equation 31 equlvalently repre-
sents a projection onto the tangent space ® of |‘P(t)> For a
small time At, the wave function in eq 30 has the formal
solution:

e PHA P (1)) (36)

This process is iterated for long-time evolution ¢ with At
carefully tested to ensure convergence.
At 0 K, the expectation value of any operator E() is

(B(H)) = (P(0)le™ Fe ™1P¥(0)) (37)

where time evolution follows eq 36 numerically. In this
work, however, we address finite-temperature problems using
the reduced density matrix formalism. The general expectation
value is therefore given by eq 26:

P(t + At)) =

(B(£)) = (LIEN(E)) = (IJBe ' (0)) (38)

2.3.3. Particle Conservation. The Holstein—Peierls model
describes a single electron in the system coupled to phonons.
Its formulation uses the occupation number representation or
the conventional Fock space and constrains the electron
number to unity throughout the entire process. In contrast, the
spin-boson model describes a two-level system coupled to a
bosonic environment or a bosonic bath. Its basis states
represent occupancy of either one level or the other and not
the population of a specific site. Consequently, we can impose

and leverage Ul symmetry to preserve particle conservation in
the Holstein/Peierls model.

To satisfy this single-electron constraint, the maximally
entangled state can lie within the single-electron subspace
o) = Zi 10,0,---0,_,0,_,1; 1i0i+10i+1:'0N0N>~® In = 0). F_?r
the spin-boson model, 1I,) =I1,(100,) + 11,1;)) ® | n = 0).
The initial states for the models are provided in Section 3.

2.3.4. Ordering of Degrees of Freedom. Although environ-
mental issues have been addressed, the ordering scheme
remains a significant consideration.’” 39,4044 We adopted the
two ordering schemes illustrated in Figure 2. For the spin-

(a) Virtual phonon site

000 -®
v
System site in physical & twin space

(b) Virtual phonon site
A

%.. o @ o - @

System site in physical & twin space

Figure 2. Schematic diagrams of the model configurations: (a) Spin-
boson model; (b) Holstein/Peierls model. The blue circles represent
virtual phonons, while white and black circles represent system sites in
physical and twin space, respectively.

boson model (Figure 2a), the system part contains only two
system sites, followed by virtual phonon sites. Here, each
physical site is paired with its auxiliary counterpart to minimize
long-range interactions. For the Holstein—Peierls model
(Figure 2b), the ordering consists of N replications of the
structure in Figure 2a. White circles represent physical system
sites, each followed by their corresponding black auxiliary sites,
and blue circles denote virtual phonon sites.

Similar ordering problems were encountered in our previous
k, >3+ using TFD formalism for finite-temperature
electron—phonon coupling. However, TFD requires doubling
of all physical phonon modes, which are discretized from the
continuous spectral density. In contrast, for open quantum
dynamics combined with MPS, only the system sites need
duplication, followed by virtual phonon modes, which may not
correspond directly to physical phonon modes. Furthermore,
for the Holstein/Peierls model, the presence of only one
electron allows us to merge all electronic sites into a single site,
significantly enhancing computational efficiency®” in Section

3.3.
3. RESULTS AND DISCUSSION

We employ Padé decomposition of eq 3 to circumvent the
Markovian approximation in Matsubara decomposition®”
throughout this work, unless otherwise specified. Decom-
position parameters are provided in Section S3. Subsequently,
we analyze the applicability of the three distinct models
introduced in Section 2.1.

3.1. Spin-Boson Model. The spin-boson model describes
a broad spectrum of phenomena, including charge-energy
transfer, polaron dynamics, vibrational relaxation, and spin
decoherence, among others. It represents a two-level system
coupled to phonon modes, with the Hamiltonian defined in eq
4. Schematic representations are depicted in Figures 2a and 3.

Population dynamics presented in Figure 4 employ
parameters from ref 62, with e =0, A =1ineq4, 4 =5, @,

https://doi.org/10.1021/acs.jctc.5c01385
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phonon bath

Figure 3. Spin-boson model: Diagrammatic representation. The
system comprises two electronic levels yet is mathematically described
through a single-site Hamiltonian.

101 \\ —— HEOM+MPS

0ol | HEOM

0.8

P11

0.7 A

26, ﬁ,~

0.51

00 05 10 15 20 25

Figure 4. Time-dependent donor-state population validated against
HEOM results.”

= 0.25 in eq 6, and temperature f = 1. Results demonstrate
quantitative agreement with HEOM,” confirming the accuracy
of our HEOM-MPS hybrid approach. Time-dependent MPS
parameters include: time step At = 0.005, bond dimension M =
50, and virtual phonon basis size equals 25. Spectral
decomposition utilizes 7 Matsubara modes under the
Markovian approximation (see Section S3).

3.2. FMO and Frenkel—Holstein Model.

J=

12410 —87.7 S.5 -59 6.7 —13.7 —99
—87.7 12530 30.8 8.2 0.7 11.8 4.3
5.5 30.8 12210 —-53.5 —-22 —-9.6 6

=59 82 —583.5 12320 -70.7 —17 —63.3
6.7 0.7 —-22 =707 12480 811 -—13
-13.7 118 -96 -—17 811 12630 39.7
-99 43 6 —-633 —13 39.7 12440
(39)

To demonstrate the efficacy of our HEOM + MPS
methodology, we examine excitation energy transfer in the
seven-site FMO complex—a canonical model for photo-
synthetic energy transduction. The system Hamiltonian (eq 9)
and schematic representation (Figures 2b and S) are provided,
with site energies and electronic couplings,”® as shown in eq 39
in the unit of cm™'. Additional parameters78 are 1 = 70 em™},
o' =351, T = 300 K.

Population dynamics for all seven sites using the conven-
tional Fock space method are presented in Figure 6a (see
Section 3.3 for details), and the results demonstrate
quantitative agreement with HEOM.”® Time-dependent MPS
parameters: time step At = 3 a.u, bond dimension M = 100,
virtual phonon basis size equals 10. Spectral density
decomposition employs S Padé modes (see Section S3).

3.3. The Ordering and Basis for HEOM + MPS in
State-Vector Space. We analyze potential improvements to
Figure 2b’s tensor network structure: performance, efliciency,
and accuracy of MPS are optimized under low-entanglement
conditions""***"~* and deteriorated with long-range entan-

& @

Figure S. Schematic plot of the seven-site FMO complex. Primary
excitation transfer pathways: 1 - 2 — 3 and 6 = 5/7 = 4 — 3.
Wavy lines denote intramolecular phonon modes at each site.

glement. In the current configuration, electronic degrees of
freedom are separated by phonon modes—a suboptimal
arrangement exacerbated by more phonon modes.”” Crucially,
the FMO model represents a single-excitation subspace with
precisely 7 electronic states (degrees of freedom equal 7 for
this situation). While site-based ordering in conventional Fock
space, followed by Ul symmetry restriction remains possible,
the explicit mixing of electronic sites into a state-vector space
constitutes a more efficient approach by

(i) minimizing electron—phonon entanglements
(ii) leveraging the single-excitation Hilbert space reduction.

The spin-boson model, formulated in a one site within two-
level space rather than with 2 sites’ electronic creation/
annihilation operators, actually operates within a state-vector
space. Here, the single system site directly represents the
occupation of either one of the two states.

This approach was previously implemented using discretized
phonon modes in TFD + MPS.** However, in the HEOM +
MPS framework—where twin space duplicates the system’s
electronic degrees of freedom and duplicates the number of
electrons in the original system—we must explicitly account
for the anticommutation relations between physical space
operators and their auxiliary counterparts. Therefore, the 14
electronic states (7 physical + 7 twin) cannot be indiscrim-
inately combined.

We can establish the commutation relations between
creation/annihilation operators in physical space and twin
space, as derived in Section S2. This allows us to consolidate
the seven physical space sites into a single composite site with
a 7-dimensional basis and merge the seven twin space sites into
another composite site with a 7-dimensional basis. This
configuration—termed the state-vector space—contrasts with
the conventional Fock space approach, where each site
represents an individual electronic orbital. Schematic repre-
sentations are provided in Figure 7.

Figure 6 compares the state-vector space and Fock space
results for the FMO model under identical parameters. Both
schemes exhibit negligible convergence differences at bond
dimension M = 100. We quantify numerical error as

7
EI'I'OI'(t) = Z lR(t) - B,standard(t)l
~ (40)
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Figure 6. Time-dependent occupation numbers of the seven sites in the FMO model. We take (a) conventional Fock space restricted in Ul
symmetry and (b) state-vector space configurations for HEOM + MPS calculations, as shown in Section 3.3. The results are compared with HEOM

.78
calculations.

Figure 7. Schematic representations of basis schemes for HEOM +
MPS. (a) State-vector space: blue sites denote electronic degrees in
physical and twin spaces. Orange sites represent virtual phonon sites.
(b) Conventional Fock space: 2N electronic states (N = 7 for FMO)
with proximal arrangement of system sites and auxiliary counterparts
to minimize long-range entanglement.

where the reference standard uses HEOM + MPS in state-
vector space with At = § a.u, bond dimension M = 150, Padé
modes count 5, and virtual phonon basis size of 12. The
corresponding error analysis is presented in Figure 8.

0.6
—— M=10,Fock space
054 — M=20
— M=30
0.4 M=50
. M=10,state space 00
<} --= M=20
0.3 1
5 e M=30 E0.02
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0.1 time(fs)
0.0
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time(fs)
Figure 8. Time-dependent error for FMO model simulations
comparing state-vector and Fock space schemes across bond
dimensions. Fixed parameters: At = 10 a.u, Padé modes count 4,
and virtual phonon basis of 10. Reference standard: state-vector space
HEOM + MPS with At = S a.u, bond dimension M = 150, Pade
modes count S, and virtual phonon basis of 12.

In Figure 8, the conventional Fock space method
simulations at bond dimension M = 10 exhibit more than
50% relative error. Conversely, the state-vector space method
achieves less than 4% error under identical conditions. Even at
M =20-30, the Fock space configuration maintains more than
0.7% error, only falling below 0.2% at M = 50. The state-vector
space scheme attains comparable accuracy at M = 20, with M =
30 outperforming the Fock space method at M = 50. These

results demonstrate the significant advantages of the state-
vector space scheme over the conventional Fock space
approach in terms of computational efficiency and accuracy.

3.4. HEOM + MPS Vs TFD + MPS. This section contrasts
HEOM + MPS (rooted in open quantum dynamics) with TFD
+ MPS (employing a holistic system-environment treatment),
both addressing finite-temperature problems under initially
disentangled system-bath conditions.

We first define the time-evolving effective Hamiltonians:

HEOM r .
Hy " = Hy — Hy - IZ 1bicbi
ik
+ Z |’7k| bik(“i+“i - ﬁi+ai)
ik

k*di-'—ﬁi )

1
+ —bi(nkufui -n
ik (41)

TFD iG —iG
Hff = 61 EHe B

€

=H{ + Z w (bib, — Ei:l;ik) + Z cosh Gkgka)kuf

ik ik
ai(bi-;c— + by) + Z sinh gkgkwk“;r“i(gi: + Eik)
ik
(42)
where 0, = arctan h(e 7"/2), and

G = —i), 0,(byb, — b;,;l;i:) denotes the bosonic unitary
transformation operator. Derivations of eq 42 follow
established methodology.””**” Crucially, TFD + MPS
requires auxiliary sites only for environmental phonons—
without twin spaces of the system—contrasting with HEOM +
MPS’s dual-space architecture. Figure 9 illustrates the MPS
configurations for TFD + MPS, enabling a direct intuitive
comparison with HEOM + MPS.

Second, to discretize the Debye spectral density, we
implement the following discretization schemes:**”°

2(IN+1) o
T cuc2 + @? (43)

plw) =

f’dwp<w)=j, j=1,2-N
0

(44)
jT
W, = @, tan————
2(N+1) (45)
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(a)

Figure 9. Basis scheme representations for the TFD + MPS. (a) State-
vector space: blue site denotes the consolidated electronic system.
Orange sites represent discretized phonon modes and their thermo-
field auxiliary counterparts. (b) Fock space: N electronic states with
proximal arrangement of discretized phonon modes and auxiliary

modes (orange sites). (N = 7).
-9 _ A
B sz 2(N + Do,
(46)

Figure 10 compares HEOM + MPS and TFD + MPS
performance for the state-vector space method. HEOM + MPS

1

2 J(w) _
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Figure 10. Time-dependent error comparison for HEOM + MPS vs
TFD + MPS (state-vector space) across bond dimensions. HEOM +
MPS parameters and reference standard are identical to those in
Figure 8. TFD + MPS parameters are 70 discretized phonon modes:
35 physical +35 auxiliary modes.

parameters and reference standards match those in Figure 8.
Fixed TFD + MPS parameters are At = 10 a.u and phonon
basis equal to 10 (consistent with HEOM + MPS). Discretized
modes count 3 physical modes and 70 effective modes (finite-
temperature doubling). TFD + MPS exhibits a significantly

slower convergence than HEOM + MPS for the Debye spectral
density.

We compare HEOM + MPS with TFD + MPS using a
complexity analysis. The number of parameters in the MPS
wave function is polynomial with respect to the number of
degrees of freedom, the number of MPS sites, and the square
of the bond dimension. For the FMO model, the number of
electronic sites and their associated degrees of freedom are
fixed. In the HEOM + MPS approach, there are 14 electronic
sites with a dimensionality of 2 each (conventional Fock
space) but with only 2 sites of dimensionality 7 each in the
state-vector space. In the TFD + MPS approach, there are 7
electronic sites of dimensionality 2 (conventional Fock space)
and only 1 state-vector site of dimensionality 7 in the state-
vector space. These differences in the electronic part are
relatively minor, particularly in the state-vector space
representation. The main computational difference arises
from the treatment of the phonons. With the phonon degrees
of freedom per mode fixed at 10 as used in the main text, the
HEOM + MPS method employs 4 virtual phonon sites per
electronic site, resulting in a total of 28 virtual phonon sites. In
contrast, the TFD + MPS method uses 35 physical and 35
auxiliary phonon sites per electronic site, leading to a total of
490 phonon sites. Furthermore, a larger number of sites and
increased entanglement generally require a larger bond
dimension, which further influences the computational cost.

It should be noted that although we compare HEOM +
MPS and TFD + MPS in terms of computational complexity,
their physical interpretations are fundamentally different. In
HEOM + MPS, the virtual phonon sites originate from a
mathematical construction based on the discretization of the
bath correlation function; they obey bosonic commutation
relations, and the method belongs to the family of open
quantum dynamics methods. In TFD + MPS, the phonon sites
represent real physical phonons, arising from discretization of
the full quantum space and spectral density function.

Third, we examine the sensitivity of results to the number of
discretized phonon modes. For HEOM + MPS, convergence is
achieved with just 4 modes, yielding quantitatively accurate
dynamics. In contrast, TFD + MPS requires more than 40
modes, even at short times (finite-temperature doubling) to
approach convergence, as shown in Figure 1la. We can
observe that at short times, the error is dominated by the
number of phonon modes, where a higher number generally
leads to better accuracy, as the influence of bond dimension

(a)

(b)
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Figure 11. (a) Time-dependent error for TFD + MPS (state-vector space) in the FMO model: Bond dimension and phonon modes dependence.
Parameters match those in Figure 10. (b) Site population dynamics: Reference standard and TFD + MPS with M = 100 and 20 discretized modes

(10 physical +10 auxiliary).
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and entanglement entropy remains limited. In contrast, at a
longer evolution time, a small bond dimension results in the
accumulation of truncation errors, leading to a significant
increase in the overall error. Besides, insufficient modes induce
unphysical artifacts, including spurious recurrences and
persistent oscillations at extended time scales”**®”" both in
Figure 11a and b.

Finally, we benchmarked computational efficiency for both
methodologies. Using fixed parameters (At = 10 a.u, phonon
basis equal to 10), we analyzed time evolution over 500 fs
(2,067 time steps), as shown in Figure 12. HEOM + MPS

—e— HEOM+MPS,state space .m
1400 HEOM+MPS, Fock space
12004 '™ TFD+MPS state space,mode=352
’51000 . 904
................. =
£ g00q © £99]
g & 70
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Figure 12. Computational time across methodologies for 500 fs
evolution with At = 10 a.u. All calculations were performed on a
virtual machine equipped with an Intel Xeon Platinum 8255C CPU @
2.50 GHz, 4 cores, and 8 GB of RAM.

exhibits 22—27% faster execution in state-vector space than in
conventional Fock space. In addition, both HEOM imple-
mentations outperform TFD by more than an order of
magnitude in efficiency.

3.5. Peierls Model. We finally examine the Peierls
model—distinguished from the Holstein model by its
intermolecular electron—phonon coupling (Figure 13). Apply-
ing HEOM to this one-dimensional system, we simulate single-
electron diffusion with a Hamiltonian (eq 10) featuring
nonlocal electron—phonon interactions and only nearest-
neighbor hopping. Initializing an electron at site 15 of a 31-
site chain, we track carrier diffusion via time-dependent and

A2A2

Figure 13. Schematic representations of (a) Holstein and (b) Peierls
models. Peierls coupling manifested as intermolecular electron—
phonon coupling is explicitly encoded in eq 10.

(b)

site-resolved populations, computing mean square displace-
ment (MSD):

MSD(t) = (Ar¥(t)) — (Ar(t))?
:Z n]-(f)(j - j())2 - [Zl nl(t)(} - ]0)]
j

Parameters: ] = =300 cm™), ¢ = 0, 1 = 323 cm™}, w_ = 41
cm™". Other parameters for HEOM+MPS are At = 3 a.u, bond
dimension M = 100, Padé modes count 7, and virtual phonon
basis size equal to 11. Figure 14 demonstrates robust
agreement between our method and benchmark HEOM’”*
results, particularly at cryogenic temperatures.

(47)

=== 100K,HEOM
129 . 200k
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0
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Figure 14. MSD of electron transport in a 31-site chain at different

temperatures. Comparisons are between HEOM + MPS results and
standard HEOM calculations.””*

4. CONCLUSIONS

In this study, we employed the HEOM equation combined
with MPS algorithms to investigate the time-dependent
populations for organic molecular aggregates with electron—
phonon couplings. Calculations were performed for the spin-
boson model, the FMO model, and the Peierls diffusion model.

We first introduce the HEOM formulations. Since these
equations are based on density matrices, we employ a twin-
space representation to transform them into a Schrodinger-like
equation. Using virtual phonon sites, we can decouple ADOs,
yielding an effective Hamiltonian that combines naturally with
MPS. The proposed HEOM + MPS methodology was
rigorously validated across multiple models and parameter
regimes. To validate the accuracy and efliciency of our method,
we compared results with conventional HEOM and TFD +
MPS. When compared with TFD + MPS, despite both
methods utilizing auxiliary spaces and density matrices and are
at finite temperature, HEOM + MPS demonstrates marked
superiority in accuracy and computational efficiency. This
advantage stems from fundamental differences in their effective
Hamiltonians. Furthermore, we address configuration and
ordering optimization problems, leveraging the Ul symmetry
for single-electron systems to develop a state-vector space
approach for HEOM + MPS. This implementation outper-
forms conventional Fock space representations. Finally, for the
Peierls model, our method maintains high accuracy even at low
temperatures, demonstrating robust applicability to general
charge transport problems in dissipative bosonic environments.

This work primarily focuses on charge transport in
molecular aggregates, bulk systems, and single-electron
problems. A number of interesting issues, such as molecular
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junctions with dissipative fermionic environments, many-
electron systems, spin/heat transport, and disorder prob-
lems,*>”* remain to be further explored.
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